Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erik R. Farquhar is active.

Publication


Featured researches published by Erik R. Farquhar.


Angewandte Chemie | 2009

A Synthetic High‐Spin Oxoiron(IV) Complex: Generation, Spectroscopic Characterization, and Reactivity

Jason England; Marlène Martinho; Erik R. Farquhar; Jonathan R. Frisch; Emile L. Bominaar; Eckard Münck; Lawrence Que

High versus low: The high-yield generation of a synthetic high-spin oxoiron(IV) complex, [Fe(IV)(O)(TMG(3)tren)](2+) (see picture, TMG(3)tren = 1,1,1-tris{2-[N2-(1,1,3,3-tetramethylguanidino)]ethyl}amine), has been achieved by using the very bulky tetradentate TMG(3)tren ligand, in order to both sterically protect the oxoiron(IV) moiety and enforce a trigonal bipyramidal geometry at the iron center, for which an S = 2 ground state is favored.


Journal of the American Chemical Society | 2010

The Crystal Structure of a High-Spin OxoIron(IV) Complex and Characterization of Its Self-Decay Pathway

Jason England; Yisong Guo; Erik R. Farquhar; Victor G. Young; Eckard Münck; Lawrence Que

[Fe(IV)(O)(TMG(3)tren)](2+) (1; TMG(3)tren = 1,1,1-tris{2-[N(2)-(1,1,3,3-tetramethylguanidino)]ethyl}amine) is a unique example of an isolable synthetic S = 2 oxoiron(IV) complex, which serves as a model for the high-valent oxoiron(IV) intermediates observed in nonheme iron enzymes. Congruent with DFT calculations predicting a more reactive S = 2 oxoiron(IV) center, 1 has a lifetime significantly shorter than those of related S = 1 oxoiron(IV) complexes. The self-decay of 1 exhibits strictly first-order kinetic behavior and is unaffected by solvent deuteration, suggesting an intramolecular process. This hypothesis was supported by ESI-MS analysis of the iron products and a significant retardation of self-decay upon use of a perdeuteromethyl TMG(3)tren isotopomer, d(36)-1 (KIE = 24 at 25 degrees C). The greatly enhanced thermal stability of d(36)-1 allowed growth of diffraction quality crystals for which a high-resolution crystal structure was obtained. This structure showed an Fe horizontal lineO unit (r = 1.661(2) A) in the intended trigonal bipyramidal geometry enforced by the sterically bulky tetramethylguanidinyl donors of the tetradentate tripodal TMG(3)tren ligand. The close proximity of the methyl substituents to the oxoiron unit yielded three symmetrically oriented short C-D...O nonbonded contacts (2.38-2.49 A), an arrangement that facilitated self-decay by rate-determining intramolecular hydrogen atom abstraction and subsequent formation of a ligand-hydroxylated iron(III) product. EPR and Mossbauer quantification of the various iron products, referenced against those obtained from reaction of 1 with 1,4-cyclohexadiene, allowed formulation of a detailed mechanism for the self-decay process. The solution of this first crystal structure of a high-spin (S = 2) oxoiron(IV) center represents a fundamental step on the path toward a full understanding of these pivotal biological intermediates.


Proceedings of the National Academy of Sciences of the United States of America | 2014

A family of starch-active polysaccharide monooxygenases

Van V. Vu; William T. Beeson; Elise A. Span; Erik R. Farquhar; Michael A. Marletta

Significance Polysaccharide monooxygenases (PMOs) are recently discovered extracellular fungal and bacterial enzymes that are able to cleave the recalcitrant polysaccharides cellulose and chitin. We describe the discovery of a new family of fungal PMOs that act on starch based on bioinformatic, biochemical, and spectroscopic studies on NCU8746, a representative starch-active PMO from Neurospora crassa. The data support a proposed enzymatic mechanism and show that NCU08746 shares evolutionarily conserved features with previously reported PMOs. This discovery extends the currently known PMO family, suggesting the existence of a PMO superfamily with a much broader range of substrates. Starch-active PMOs provide an expanded perspective on studies of starch metabolism and may have potential in the food and starch-based biofuel industries. The recently discovered fungal and bacterial polysaccharide monooxygenases (PMOs) are capable of oxidatively cleaving chitin, cellulose, and hemicelluloses that contain β(1→4) linkages between glucose or substituted glucose units. They are also known collectively as lytic PMOs, or LPMOs, and individually as AA9 (formerly GH61), AA10 (formerly CBM33), and AA11 enzymes. PMOs share several conserved features, including a monocopper center coordinated by a bidentate N-terminal histidine residue and another histidine ligand. A bioinformatic analysis using these conserved features suggested several potential new PMO families in the fungus Neurospora crassa that are likely to be active on novel substrates. Herein, we report on NCU08746 that contains a C-terminal starch-binding domain and an N-terminal domain of previously unknown function. Biochemical studies showed that NCU08746 requires copper, oxygen, and a source of electrons to oxidize the C1 position of glycosidic bonds in starch substrates, but not in cellulose or chitin. Starch contains α(1→4) and α(1→6) linkages and exhibits higher order structures compared with chitin and cellulose. Cellobiose dehydrogenase, the biological redox partner of cellulose-active PMOs, can serve as the electron donor for NCU08746. NCU08746 contains one copper atom per protein molecule, which is likely coordinated by two histidine ligands as shown by X-ray absorption spectroscopy and sequence analysis. Results indicate that NCU08746 and homologs are starch-active PMOs, supporting the existence of a PMO superfamily with a much broader range of substrates. Starch-active PMOs provide an expanded perspective on studies of starch metabolism and may have potential in the food and starch-based biofuel industries.


Chemical Science | 2013

Nonheme oxoiron(IV) complexes of pentadentate N5 ligands: spectroscopy, electrochemistry, and oxidative reactivity

Dong Wang; Kallol Ray; Michael J. Collins; Erik R. Farquhar; Jonathan R. Frisch; Laura Gómez; Timothy A. Jackson; Marion Kerscher; Arkadius Waleska; Peter Comba; Lawrence Que

Oxoiron(IV) species have been found to act as the oxidants in the catalytic cycles of several mononuclear nonheme iron enzymes that activate dioxygen. To gain insight into the factors that govern the oxidative reactivity of such complexes, a series of five synthetic S = 1 [Fe(IV)(O)(L(N5))](2+) complexes has been characterized with respect to their spectroscopic and electrochemical properties as well as their relative abilities to carry out oxo transfer and hydrogen atom abstraction. The Fe=O units in these five complexes are supported by neutral pentadentate ligands having a combination of pyridine and tertiary amine donors but with different ligand frameworks. Characterization of the five complexes by X-ray absorption spectroscopy reveals Fe=O bonds of ca. 1.65 Å in length that give rise to the intense 1s→3d pre-edge features indicative of iron centers with substantial deviation from centrosymmetry. Resonance Raman studies show that the five complexes exhibit ν(Fe=O) modes at 825-841 cm(-1). Spectropotentiometric experiments in acetonitrile with 0.1 M water reveal that the supporting pentadentate ligands modulate the E(1/2)(IV/III) redox potentials with values ranging from 0.83 to 1.23 V vs. Fc, providing the first electrochemical determination of the E(1/2)(IV/III) redox potentials for a series of oxoiron(IV) complexes. The 0.4-V difference in potential may arise from differences in the relative number of pyridine and tertiary amine donors on the L(N5) ligand and in the orientations of the pyridine donors relative to the Fe=O bond that are enforced by the ligand architecture. The rates of oxo-atom transfer (OAT) to thioanisole correlate linearly with the increase in the redox potentials, reflecting the relative electrophilicities of the oxoiron(IV) units. However this linear relationship does not extend to the rates of hydrogen-atom transfer (HAT) from 1,3-cyclohexadiene (CHD), 9,10-dihydroanthracene (DHA), and benzyl alcohol, suggesting that the HAT reactions are not governed by thermodynamics alone. This study represents the first investigation to compare the electrochemical and oxidative properties of a series of S = 1 Fe(IV)=O complexes with different ligand frameworks and sheds some light on the complexities of the reactivity of the oxoiron(IV) unit.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Swapping metals in Fe- and Mn-dependent dioxygenases: Evidence for oxygen activation without a change in metal redox state

Joseph P. Emerson; Elena G. Kovaleva; Erik R. Farquhar; John D. Lipscomb; Lawrence Que

Biological O2 activation often occurs after binding to a reduced metal [e.g., M(II)] in an enzyme active site. Subsequent M(II)-to-O2 electron transfer results in a reactive M(III)-superoxo species. For the extradiol aromatic ring-cleaving dioxygenases, we have proposed a different model where an electron is transferred from substrate to O2 via the M(II) center to which they are both bound, thereby obviating the need for an integral change in metal redox state. This model is tested by using homoprotocatechuate 2,3-dioxygenases from Brevibacterium fuscum (Fe-HPCD) and Arthrobacter globiformis (Mn-MndD) that share high sequence identity and very similar structures. Despite these similarities, Fe-HPCD binds Fe(II) whereas Mn-MndD incorporates Mn(II). Methods are described to incorporate the nonphysiological metal into each enzyme (Mn-HPCD and Fe-MndD). The x-ray crystal structure of Mn-HPCD at 1.7 Å is found to be indistinguishable from that of Fe-HPCD, while EPR studies show that the Mn(II) sites of Mn-MndD and Mn-HPCD, and the Fe(II) sites of the NO complexes of Fe-HPCD and Fe-MndD, are very similar. The uniform metal site structures of these enzymes suggest that extradiol dioxygenases cannot differentially compensate for the 0.7-V gap in the redox potentials of free iron and manganese. Nonetheless, all four enzymes exhibit nearly the same KM and Vmax values. These enzymes constitute an unusual pair of metallo-oxygenases that remain fully active after a metal swap, implicating a different way by which metals are used to promote oxygen activation without an integral change in metal redox state.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Swapping metals in Fe- and Mn-dependent dioxygenases

Joseph P. Emerson; Elena G. Kovaleva; Erik R. Farquhar; John D. Lipscomb; Lawrence Que

Biological O2 activation often occurs after binding to a reduced metal [e.g., M(II)] in an enzyme active site. Subsequent M(II)-to-O2 electron transfer results in a reactive M(III)-superoxo species. For the extradiol aromatic ring-cleaving dioxygenases, we have proposed a different model where an electron is transferred from substrate to O2 via the M(II) center to which they are both bound, thereby obviating the need for an integral change in metal redox state. This model is tested by using homoprotocatechuate 2,3-dioxygenases from Brevibacterium fuscum (Fe-HPCD) and Arthrobacter globiformis (Mn-MndD) that share high sequence identity and very similar structures. Despite these similarities, Fe-HPCD binds Fe(II) whereas Mn-MndD incorporates Mn(II). Methods are described to incorporate the nonphysiological metal into each enzyme (Mn-HPCD and Fe-MndD). The x-ray crystal structure of Mn-HPCD at 1.7 Å is found to be indistinguishable from that of Fe-HPCD, while EPR studies show that the Mn(II) sites of Mn-MndD and Mn-HPCD, and the Fe(II) sites of the NO complexes of Fe-HPCD and Fe-MndD, are very similar. The uniform metal site structures of these enzymes suggest that extradiol dioxygenases cannot differentially compensate for the 0.7-V gap in the redox potentials of free iron and manganese. Nonetheless, all four enzymes exhibit nearly the same KM and Vmax values. These enzymes constitute an unusual pair of metallo-oxygenases that remain fully active after a metal swap, implicating a different way by which metals are used to promote oxygen activation without an integral change in metal redox state.


Journal of the American Chemical Society | 2012

Lewis Acid Trapping of an Elusive Copper–Tosylnitrene Intermediate Using Scandium Triflate

Subrata Kundu; Enrico Miceli; Erik R. Farquhar; Florian Felix Pfaff; Uwe Kuhlmann; Peter Hildebrandt; Beatrice Braun; Claudio Greco; Kallol Ray

High-valent copper-nitrene intermediates have long been proposed to play a role in copper-catalyzed aziridination and amination reactions. However, such intermediates have eluded detection for decades, preventing the unambiguous assignments of mechanisms. Moreover, the electronic structure of the proposed copper-nitrene intermediates has also been controversially discussed in the literature. These mechanistic questions and controversy have provided tremendous motivation to probe the accessibility and reactivity of Cu(III)-NR/Cu(II)N(•)R species. In this paper, we report a breakthrough in this field that was achieved by trapping a transient copper-tosylnitrene species, 3-Sc, in the presence of scandium triflate. The sufficient stability of 3-Sc at -90 °C enabled its characterization with optical, resonance Raman, NMR, and X-ray absorption near-edge spectroscopies, which helped to establish its electronic structure as Cu(II)N(•)Ts (Ts = tosyl group) and not Cu(III)NTs. 3-Sc can initiate tosylamination of cyclohexane, thereby suggesting Cu(II)N(•)Ts cores as viable reactants in oxidation catalysis.


Nature Chemistry | 2009

A diiron(IV) complex that cleaves strong C-H and O-H bonds.

Dong Wang; Erik R. Farquhar; Audria Stubna; Eckard Münck; Lawrence Que

The controlled cleavage of strong C-H bonds like those of methane poses a significant challenge for chemists. In nature methane is oxidized to methanol by soluble methane monooxygenase via a diiron(IV) intermediate called Q. To model the chemistry of MMO-Q, an oxo-bridged diiron(IV) complex has been generated by electrochemical oxidation and characterized by several spectroscopic methods. This novel species has an Fe(IV/III) redox potential of +1.50 V vs. ferrocene (>2 V vs. NHE), the highest value thus far determined electrochemically for an iron complex. This species is quite an effective oxidant. It can attack C-H bonds as strong as 100 kcal mol(-1) and reacts with cyclohexane a hundred- to a thousand-fold faster than mononuclear Fe(IV)=O complexes of closely related ligands. Strikingly, this species can also cleave the strong O-H bonds of methanol and tert-butanol instead of their weaker C-H bonds, representing the first example of O-H bond activation for iron complexes.


Journal of the American Chemical Society | 2008

Electron Paramagnetic Resonance Detection of Intermediates in the Enzymatic Cycle of an Extradiol Dioxygenase

William A. Gunderson; Anna I. Zatsman; Joseph P. Emerson; Erik R. Farquhar; Lawrence Que; John D. Lipscomb; Michael P. Hendrich

Extradiol catecholic dioxygenases catalyze the cleavage of the aromatic ring of the substrate with incorporation of both oxygen atoms from O2. These enzymes are important in nature for the recovery of large amounts of carbon from aromatic compounds. The catalytic site contains either Fe or Mn coordinated by a facial triad of two His and one Glu or Asp residues. Previous studies have shown that Fe(II) and Mn(II) can be interchanged in enzymes from different organisms to catalyze similar substrate reactions. In combination, quantitative electron paramagnetic resonance spectroscopy and rapid freeze-quench experiments allow us to follow the concentrations of four different Mn species, including key metal intermediates in the catalytic cycle, as the enzyme turns over its natural substrate. Two intermediates are observed: a Mn(III)-radical species which is either Mn-superoxide or Mn-substrate radical, and a unique Mn(II) species which is involved in the rate-limiting step of the cycle and may be Mn-alkylperoxo.


Journal of Biological Inorganic Chemistry | 2011

A hyperactive cobalt-substituted extradiol-cleaving catechol dioxygenase

Andrew J. Fielding; Elena G. Kovaleva; Erik R. Farquhar; John D. Lipscomb; Lawrence Que

Homoprotocatechuate 2,3-dioxygenase from Brevibacterium fuscum (HPCD) has an Fe(II) center in its active site that can be replaced with Mn(II) or Co(II). Whereas Mn-HPCD exhibits steady-state kinetic parameters comparable to those of Fe-HPCD, Co-HPCD behaves somewhat differently, exhibiting significantly higher

Collaboration


Dive into the Erik R. Farquhar's collaboration.

Top Co-Authors

Avatar

Lawrence Que

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Kallol Ray

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Joseph P. Emerson

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Eckard Münck

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Jason England

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Florian Felix Pfaff

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Philip D. Kiser

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge