Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erik Rytting is active.

Publication


Featured researches published by Erik Rytting.


Expert Opinion on Drug Delivery | 2008

Biodegradable polymeric nanocarriers for pulmonary drug delivery

Erik Rytting; Juliane Nguyen; Xiaoying Wang; Thomas Kissel

Background: Pulmonary drug delivery is attractive for both local and systemic drug delivery as a non-invasive route that provides a large surface area, thin epithelial barrier, high blood flow and the avoidance of first-pass metabolism. Objective: Nanoparticles can be designed to have several advantages for controlled and targeted drug delivery, including controlled deposition, sustained release, reduced dosing frequency, as well as an appropriate size for avoiding alveolar macrophage clearance or promoting transepithelial transport. Methods: This review focuses on the development and application of biodegradable polymers to nanocarrier-based strategies for the delivery of drugs, peptides, proteins, genes, siRNA and vaccines by the pulmonary route. Results/conclusion: The selection of natural or synthetic materials is important in designing particles or nanoparticle clusters with the desired characteristics, such as biocompatibility, size, charge, drug release and polymer degradation rate.


Reproductive Toxicology | 2010

Placental transport and in vitro effects of Bisphenol A

Thit Juul Mørck; Giuseppina Sorda; Nicoletta Bechi; Brian Rasmussen; Jesper Bo Nielsen; Francesca Ietta; Erik Rytting; Line Mathiesen; Luana Paulesu; Lisbeth E. Knudsen

Bisphenol A (BPA), an estrogen-like chemical, leaches from consumer products potentially causing human exposure. To examine the effects of BPA exposure during pregnancy, we performed studies using the BeWo trophoblast cell line, placental explant cultures, placental perfusions and skin diffusion models, all of human origin. Results showed BPA cytotoxicity in BeWo cells with an apparent EC50 at 100-125 microM. BPA exposure significantly increased beta-hCG secretion and caspase-3 expression in placental explants at an environmentally relevant concentration of 1 nM. In the transport studies, a rapid transfer of BPA was observed across the term placentae and the BeWo cell monolayer. Further, transdermal transport of BPA was observed. These results indicate that fetal BPA exposure through placental exchange occurs with potential adverse implications for placental and fetal development. This battery of test systems within the realm of human implantation and fetal development represents important elements in risk assessment of reproductive toxicity.


Aaps Journal | 2005

Aqueous and cosolvent solubility data for drug-like organic compounds

Erik Rytting; Kimberley A. Lentz; Xue Qing Chen; Feng Qian; Srini Venkatesh

Recently 2 QSPR-based in silico models were developed in our laboratories to predict the aqueous and non-aqueous solubility of drug-like organic compounds. For the intrinsic aqueous solubility model, a set of 321 structurally diverse drugs was collected from literature for the analysis. For the PEG 400 cosolvent model, experimental data for 122 drugs were obtained by a uniform experimental procedure at 4 volume fractions of PEG 400 in water, 0%, 25%, 50%, and 75%. The drugs used in both models represent a wide range of compounds, with log P values from −5 to 7.5, and molecular weights from 100 to >600 g/mol. Because of the standardized procedure used to collect the cosolvent data and the careful assessment of quality used in obtaining literature data, both data sets have potential value for the scientific community for use in building various models that require experimental solubility data.


Toxicology in Vitro | 2009

Modeling placental transport: Correlation of in vitro BeWo cell permeability and ex vivo human placental perfusion

Marie Sønnegaard Poulsen; Erik Rytting; Tina Mose; Lisbeth E. Knudsen

The placental passage of three compounds with different physicochemical properties was recently investigated in ex vivo human placental perfusion experiments (caffeine, benzoic acid, and glyphosate) [Mose, T., Kjaerstad, M.B., Mathiesen, L., Nielsen, J.B., Edelfors, S., Knudsen, L.E., 2008. Placental passage of benzoic acid, caffeine, and glyphosate in an ex vivo human perfusion system. J. Toxicol. Environ. Health, Part A 71, 984-991]. In this work, the transport of these same three compounds, plus the reference compound antipyrine, was investigated using BeWo (b30) cell monolayers. Transport across the BeWo cells was observed in the rank order of caffeine>antipyrine>benzoic acid>glyphosate in terms of both the apparent permeability coefficient and the initial slope, defined as the linear rate of substance transferred to the fetal compartment as percent per time, a parameter used to compare the two experimental models. The results from the in vitro studies were in excellent agreement with the ex vivo results (caffeine approximately antipyrine>benzoic acid>glyphosate). However the transfer rate was much slower in the BeWo cells compared to the perfusion system. The advantages and limitations of each model are discussed in order to assist in the preparation, prediction, and performance of future studies of maternal-fetal transfer.


Methods in molecular medicine | 2006

In vitro models for studying trophoblast transcellular transport.

Claudia J. Bode; Hong Jin; Erik Rytting; Peter S. Silverstein; Amber M. Young; Kenneth L. Audus

In vitro models have proven to be effective in studying the placental transporters that play a role in the exchange of nutrients, waste products, and drugs between the maternal and fetal circulations. Although primary cultures of trophoblast cells can be used to perform uptake, efflux, and metabolism studies, only the rodent HRP-1 and the human BeWo cell lines have been shown to form confluent monolayers when grown on semi-permeable membranes. Protocols for the revival, maintenance, passage, and growth of BeWo cells for transporter expression and transcellular transport studies are provided.


International Journal of Nanomedicine | 2012

In vitro placental model optimization for nanoparticle transport studies

Laura Cartwright; Marie Sønnegaard Poulsen; Hanne Mørck Nielsen; Giulio Pojana; Lisbeth E. Knudsen; Margaret Saunders; Erik Rytting

Background Advances in biomedical nanotechnology raise hopes in patient populations but may also raise questions regarding biodistribution and biocompatibility, especially during pregnancy. Special consideration must be given to the placenta as a biological barrier because a pregnant woman’s exposure to nanoparticles could have significant effects on the fetus developing in the womb. Therefore, the purpose of this study is to optimize an in vitro model for characterizing the transport of nanoparticles across human placental trophoblast cells. Methods The growth of BeWo (clone b30) human placental choriocarcinoma cells for nanoparticle transport studies was characterized in terms of optimized Transwell® insert type and pore size, the investigation of barrier properties by transmission electron microscopy, tight junction staining, transepithelial electrical resistance, and fluorescein sodium transport. Following the determination of nontoxic concentrations of fluorescent polystyrene nanoparticles, the cellular uptake and transport of 50 nm and 100 nm diameter particles was measured using the in vitro BeWo cell model. Results Particle size measurements, fluorescence readings, and confocal microscopy indicated both cellular uptake of the fluorescent polystyrene nanoparticles and the transcellular transport of these particles from the apical (maternal) to the basolateral (fetal) compartment. Over the course of 24 hours, the apparent permeability across BeWo cells grown on polycarbonate membranes (3.0 μm pore size) was four times higher for the 50 nm particles compared with the 100 nm particles. Conclusion The BeWo cell line has been optimized and shown to be a valid in vitro model for studying the transplacental transport of nanoparticles. Fluorescent polystyrene nanoparticle transport was size-dependent, as smaller particles reached the basal (fetal) compartment at a higher rate.


Journal of Aerosol Medicine and Pulmonary Drug Delivery | 2010

Influence of Particle Size and Material Properties on Mucociliary Clearance from the Airways

Andreas Henning; Marc Schneider; Noha Nafee; Leon Muijs; Erik Rytting; Xiaoying Wang; Thomas Kissel; Dirk Grafahrend; Doris Klee; Claus-Michael Lehr

Mucociliary clearance (MC), designed by evolution to eliminate inhaled and possibly noxious material from the airways, considerably limits the benefit of inhalation therapy. Although the principles of MC seem to be understood, there are still many open questions on mucociliary particle clearance. In this study a trachea-based in vitro model was used to investigate the effect of particle size, zeta-potential, and mucoadhesive particle properties on mucociliary particle clearance. As different sized particles (50-6000 nm) were tested at equal mass concentrations, size related factors, namely particle number and particle surface area, varied by several orders of magnitude between the experiments. Surprisingly, particle clearance for 50 nm up to 6000 nm-sized polystyrene particles did not differ significantly (p < 0.05): 50 nm (2.9 +/- 0.6 mm/min); 100 nm (3.8 +/- 0.9 mm/min); 1000 nm (3.8 +/- 0.8 mm/min); 6000 nm (3.2 +/- 0.6 mm/min). In clear contrast, particles prepared from different PLGA-based copolymers (polylactic-co-glycolic acid) showed a significant effect on particle transport. PEG-PLGA particles (polyethylene glycol) showed the fastest and normal transport rates (5.9 +/- 1.7 mm/min) compared to the ICRPs (International Commission of Radiological Protection) standard value for average tracheal transport rates (5.5 mm/min). Mucoadhesive chitosan-PLGA particles were transported at the slowest rate (0.7 +/- 0.3 mm/min) of all particles tested. Overall, particle size and zeta-potential seem to be relatively uncritical, whereas material properties and the related particle surface chemistry significantly influence mucociliary particle clearance. Considering these findings in future drug formulation seems to be a promising strategy to improve inhalation therapy by prolonged particle/drug residence time within the airways.


Journal of Controlled Release | 2010

In vitro and in vivo performance of biocompatible negatively-charged salbutamol-loaded nanoparticles.

Erik Rytting; Michael Bur; Regis Cartier; Thierry Bouyssou; Xiaoying Wang; Michael Krüger; Claus-Michael Lehr; Thomas Kissel

The development and performance of a novel nanoparticle-based formulation for pulmonary delivery has been characterized chronologically through the particle preparation process, in vitro testing of drug release, biocompatibility, degradation, drug transport in cell culture, and in vivo bronchoprotection studies in anaesthetised guinea pigs. This study demonstrates excellent agreement of the in vitro and in vivo experiments undertaken to prove the feasibility of the design, thereby serving as an example highlighting the importance of in vitro test methods that predict in vivo performance. Nanoparticles were prepared from the newly designed negatively-charged polymer poly(vinyl sulfonate-co-vinyl alcohol)-g-poly(d,l-lactic-co-glycolic acid) loaded with salbutamol free base. Average particle sizes of blank and drug-loaded nanoparticles prepared at the various stages of the investigations were between 91 and 204nm; average zeta potential values were between -50.1 and -25.6mV. Blank nanoparticles showed no significant toxicity, and no inflammatory activity was detected in Calu-3 cells. Sustained release of salbutamol from the nanoparticles was observed for 2.5h in vitro, and a prolonged effect was observed for 120min in vivo. These results demonstrate good agreement between in vitro and in vivo tests and also present a promising foundation for future advancement in nanomedicine strategies for pulmonary drug delivery.


International Journal of Pharmaceutics | 2013

Preparation, characterization, and transport of dexamethasone-loaded polymeric nanoparticles across a human placental in vitro model

Hazem Ali; Irina Kalashnikova; Mark A. White; Michael B. Sherman; Erik Rytting

The purpose of this study was to prepare dexamethasone-loaded polymeric nanoparticles and evaluate their potential for transport across human placenta. Statistical modeling and factorial design was applied to investigate the influence of process parameters on the following nanoparticle characteristics: particle size, polydispersity index, zeta potential, and drug encapsulation efficiency. Dexamethasone and nanoparticle transport was subsequently investigated using the BeWo b30 cell line, an in vitro model of human placental trophoblast cells, which represent the rate-limiting barrier for maternal-fetal transfer. Encapsulation efficiency and drug transport were determined using a validated high performance liquid chromatography method. Nanoparticle morphology and drug encapsulation were further characterized by cryo-transmission electron microscopy and X-ray diffraction, respectively. Nanoparticles prepared from poly(lactic-co-glycolic acid) were spherical, with particle sizes ranging from 140 to 298 nm, and encapsulation efficiency ranging from 52 to 89%. Nanoencapsulation enhanced the apparent permeability of dexamethasone from the maternal compartment to the fetal compartment more than 10-fold in this model. Particle size was shown to be inversely correlated with drug and nanoparticle permeability, as confirmed with fluorescently labeled nanoparticles. These results highlight the feasibility of designing nanoparticles capable of delivering medication to the fetus, in particular, potential dexamethasone therapy for the prenatal treatment of congenital adrenal hyperplasia.


Basic & Clinical Pharmacology & Toxicology | 2009

Transport of Benzo[α]pyrene in the Dually Perfused Human Placenta Perfusion Model: Effect of Albumin in the Perfusion Medium

Line Mathiesen; Erik Rytting; Tina Mose; Lisbeth E. Knudsen

Transport of benzo[alpha]pyrene (BaP) across the placenta was examined because it is a ubiquitous and highly carcinogenic substance found in tobacco smoke, polluted air and certain foods. Foetal exposure to this substance is highly relevant but is difficult to estimate. The human placenta is unique compared to other species; since it is available without major ethical obstacles, we have used the human placenta perfusion model to study transport from mother to foetus. Placentas were donated after births at Rigshospitalet in Copenhagen from pregnant mothers who signed an informed consent. BaP is lipophilic and studies using cell culture medium in 6-hr placenta perfusions showed minimal transport through the placenta. To increase the solubility of BaP in perfusion medium and to increase physiological relevance, perfusions were also performed with albumin added to the perfusion medium [2 and 30 mg/ml bovine serum albumin (BSA) and 30 mg/ml human serum albumin (HSA)]. The addition of albumin resulted in increased transfer of BaP from maternal to foetal reservoirs. The transfer was even higher in the presence of an HSA formulation containing acetyltryptophanate and caprylate, resulting in a foetal-maternal concentration (FM) ratio of 0.71 +/- 0.10 after 3 hr and 0.78 +/- 0.11 after 6 hr, whereas the FM ratio in perfusions without albumin was only 0.05 +/- 0.03 after 6 hr of perfusion. Less BaP accumulated in placental tissue in perfusions with added albumin. This shows that transplacental transport of the pro-carcinogenic substance BaP occurs, and emphasizes the importance of adding physiological concentrations of albumin when studying the transport of lipophilic substances.

Collaboration


Dive into the Erik Rytting's collaboration.

Top Co-Authors

Avatar

Tatiana Nanovskaya

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Gary D.V. Hankins

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Mahmoud S. Ahmed

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Shariq Ali

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sanaalarab Al-Enazy

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Xiaoming Wang

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shannon Clark

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge