Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erik S. Zimmerman is active.

Publication


Featured researches published by Erik S. Zimmerman.


Virology Journal | 2007

HIV-1 Vpr activates the G2 checkpoint through manipulation of the ubiquitin proteasome system

Jason L. DeHart; Erik S. Zimmerman; Orly Ardon; Carlos M R Monteiro-Filho; Enrique Roberto Argañaraz; Vicente Planelles

HIV-1 Vpr is a viral accessory protein that activates ATR through the induction of DNA replication stress. ATR activation results in cell cycle arrest in G2 and induction of apoptosis. In the present study, we investigate the role of the ubiquitin/proteasome system (UPS) in the above activity of Vpr. We report that the general function of the UPS is required for Vpr to induce G2 checkpoint activation, as incubation of Vpr-expressing cells with proteasome inhibitors abolishes this effect. We further investigated in detail the specific E3 ubiquitin ligase subunits that Vpr manipulates. We found that Vpr binds to the DCAF1 subunit of a cullin 4a/DDB1 E3 ubiquitin ligase. The carboxy-terminal domain Vpr(R80A) mutant, which is able to bind DCAF1, is inactive in checkpoint activation and has dominant-negative character. In contrast, the mutation Q65R, in the leucine-rich domain of Vpr that mediates DCAF1 binding, results in an inactive Vpr devoid of dominant negative behavior. Thus, the interaction of Vpr with DCAF1 is required, but not sufficient, for Vpr to cause G2 arrest. We propose that Vpr recruits, through its carboxy terminal domain, an unknown cellular factor that is required for G2-to-M transition. Recruitment of this factor leads to its ubiquitination and degradation, resulting in failure to enter mitosis.


Molecular and Cellular Biology | 2004

Human immunodeficiency virus type 1 Vpr-mediated G2 arrest requires Rad17 and Hus1 and induces nuclear BRCA1 and γ-H2AX focus formation

Erik S. Zimmerman; Junjie Chen; Joshua L. Andersen; Orly Ardon; Jason L. DeHart; Jana Blackett; Shailesh K. Choudhary; David Camerini; Paul Nghiem; Vicente Planelles

ABSTRACT Eukaryotic cells have evolved a complex mechanism for sensing DNA damage during genome replication. Activation of this pathway prevents entry into mitosis to allow for either DNA repair or, in the event of irreparable damage, commitment to apoptosis. Under conditions of replication stress, the damage signal is initiated by the ataxia-telangiectasia-mutated and Rad3-related kinase ATR. We recently demonstrated that the human immunodeficiency virus type 1 (HIV-1) gene product viral protein R (Vpr) arrests infected cells in the G2 phase via the activation of ATR. In the present study, we show that the activation of ATR by Vpr is analogous to activation by certain genotoxic agents, both mechanistically and in its downstream consequences. Specifically, we show a requirement for Rad17 and Hus1 to induce G2 arrest as well as Vpr-induced phosphorylation of histone 2A variant X (H2AX) and formation of nuclear foci containing H2AX and breast cancer susceptibility protein 1. These results demonstrate that G2 arrest mediated by the HIV-1 gene product Vpr utilizes the cellular signaling pathway whose physiological function is to recognize replication stress. These findings should contribute to a greater understanding of how HIV-1 manipulates the CD4+-lymphocyte cell cycle and apoptosis induction in the progressive CD4+-lymphocyte depletion characteristic of HIV-1 pathogenesis.


PLOS Pathogens | 2006

HIV-1 Vpr-induced apoptosis is cell cycle dependent and requires Bax but not ANT.

Joshua L. Andersen; Jason L. DeHart; Erik S. Zimmerman; Orly Ardon; Baek-Hee Kim; Guillaume Jacquot; Serge Benichou; Vicente Planelles

The HIV-1 accessory protein viral protein R (Vpr) causes G2 arrest and apoptosis in infected cells. We previously identified the DNA damage–signaling protein ATR as the cellular factor that mediates Vpr-induced G2 arrest and apoptosis. Here, we examine the mechanism of induction of apoptosis by Vpr and how it relates to induction of G2 arrest. We find that entry into G2 is a requirement for Vpr to induce apoptosis. We investigated the role of the mitochondrial permeability transition pore by knockdown of its essential component, the adenine nucleotide translocator. We found that Vpr-induced apoptosis was unaffected by knockdown of ANT. Instead, apoptosis is triggered through a different mitochondrial pore protein, Bax. In support of the idea that checkpoint activation and apoptosis induction are functionally linked, we show that Bax activation by Vpr was ablated when ATR or GADD45α was knocked down. Certain mutants of Vpr, such as R77Q and I74A, identified in long-term nonprogressors, have been proposed to inefficiently induce apoptosis while activating the G2 checkpoint in a normal manner. We tested the in vitro phenotypes of these mutants and found that their abilities to induce apoptosis and G2 arrest are indistinguishable from those of HIV-1NL4–3 vpr, providing additional support to the idea that G2 arrest and apoptosis induction are mechanistically linked.


Journal of Virology | 2005

Activation of the ATR pathway by human immunodeficiency virus type 1 Vpr involves its direct binding to chromatin in vivo.

Maoyi Lai; Erik S. Zimmerman; Vicente Planelles; Junjie Chen

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) protein Vpr (viral protein R) arrests cells in the G2 phase of the cell cycle, a process that requires activation of the ATR (ataxia-telangiectasia and Rad3-related) pathway. In this study we demonstrate that the expression of Vpr does not cause DNA double-strand breaks but rather induces ATR activation, as indicated by induction of Chk1 phosphorylation and the formation of γ-H2AX and 53BP1 nuclear foci. We define a C-terminal domain containing repeated H(F/S)RIG sequences required for Vpr-induced activation of ATR. Further investigation of the mechanism by which Vpr activates the ATR pathway reveals an increase in chromatin binding of replication protein A (RPA) upon Vpr expression. Immunostaining shows that RPA localizes to nuclear foci in Vpr-expressing cells. Furthermore, we demonstrate direct binding of Vpr to chromatin in vivo, whereas Vpr C-terminal domain mutants lose this chromatin-binding activity. These data support a mechanism whereby HIV-1 Vpr induces ATR activation by targeting the host cell DNA and probably interfering with normal DNA replication.


Journal of Virology | 2006

Human Immunodeficiency Virus Type 1 Vpr Induces DNA Replication Stress In Vitro and In Vivo

Erik S. Zimmerman; Michael P. Sherman; Jana Blackett; Jason Neidleman; Christophe Kreis; Pamela Mundt; Samuel A. Williams; M T Warmerdam; James O. Kahn; Frederick Hecht; Robert M. Grant; Carlos M. C. de Noronha; Andrew S. Weyrich; Warner C. Greene; Vicente Planelles

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) causes cell cycle arrest in G2. Vpr-expressing cells display the hallmarks of certain forms of DNA damage, specifically activation of the ataxia telangiectasia mutated and Rad3-related kinase, ATR. However, evidence that Vpr function is relevant in vivo or in the context of viral infection is still lacking. In the present study, we demonstrate that HIV-1 infection of primary, human CD4+ lymphocytes causes G2 arrest in a Vpr-dependent manner and that this response requires ATR, as shown by RNA interference. The event leading to ATR activation in CD4+ lymphocytes is the accumulation of replication protein A in nuclear foci, an indication that Vpr likely induces stalling of replication forks. Primary macrophages are refractory to ATR activation by Vpr, a finding that is consistent with the lack of detectable ATR, Rad17, and Chk1 protein expression in these nondividing cells. These observations begin to explain the remarkable resilience of macrophages to HIV-1-induced cytopathicity. To study the in vivo consequences of Vpr function, we isolated CD4+ lymphocytes from HIV-1-infected individuals and interrogated the cell cycle status of anti-p24Gag-immunoreactive cells. We report that infected cells in vivo display an aberrant cell cycle profile whereby a majority of cells have a 4N DNA content, consistent with the onset of G2 arrest.


Cell Death & Differentiation | 2005

ATR and GADD45α mediate HIV-1 Vpr-induced apoptosis

Joshua L. Andersen; Erik S. Zimmerman; Jason L. DeHart; S. Murala; Orly Ardon; Jana Blackett; Junjie Chen; Vicente Planelles

The human immunodeficiency virus type-1 (HIV-1) accessory gene vpr encodes a conserved 96-amino-acid protein that is necessary and sufficient for the HIV-1-induced block of cellular proliferation. Expression of vpr in CD4+ lymphocytes results in G2 arrest, followed by apoptosis. In a previous study, we identified the ataxia telangiectasia-mutated (ATM) and Rad3-related protein (ATR) as a cellular factor that mediates Vpr-induced cell cycle arrest. In the present study, we report that the breast cancer-associated protein-1 (BRCA1), a known target of ATR, is activated in the presence of Vpr. In addition, the gene encoding the growth arrest and DNA damage-45 protein α (GADD45α), a known transcriptional target of BRCA1, is upregulated by Vpr in an ATR-dependent manner. We demonstrate that RNAi-mediated silencing of either ATR or GADD45α leads to nearly complete suppression of the proapoptotic effect of Vpr. Our results support a model in which Vpr-induced apoptosis is mediated via ATR phosphorylation of BRCA1, and consequent upregulation of GADD45α.


Journal of Virology | 2005

The Ataxia Telangiectasia-Mutated and Rad3-Related Protein Is Dispensable for Retroviral Integration

Jason L. DeHart; Joshua L. Andersen; Erik S. Zimmerman; Orly Ardon; Dong Sung An; Jana Blackett; Baek Kim; Vicente Planelles

ABSTRACT Integration into the host cell DNA is an essential part of the retroviral life cycle and is required for the productive replication of a retrovirus. Retroviral integration involves cleavage of the host DNA and insertion of the viral DNA, forming an integration intermediate that contains two gaps, each with a viral 5′ flap. The flaps are then removed, and the gap is filled by as yet unidentified nuclease and polymerase activities. It is thought that repair of these gaps flanking the site of retroviral integration is achieved by host DNA repair machinery. The ATM and Rad3-related protein (ATR) is a member of the phosphatidylinositol 3 kinase-related family of protein kinases that play a major role in sensing and triggering repair of DNA lesions in mammalian cells. In an effort to examine the role of ATR in retroviral integration, we used RNA interference to selectively downregulate ATR and measured integration efficiency. In addition, we examined the possible role that Vpr may play in enhancing integration and, in particular, whether activation of ATR by Vpr (Roshal et al., J. Biol. Chem. 278:25879-25886, 2003) will favor human immunodeficiency virus type 1 integration. We conclude that cells in which ATR has been depleted are competent for retroviral integration. We also conclude that the presence of Vpr as a virion-bound protein does not enhance integration of a lentivirus vector in dividing cells.


Journal of Virology | 2006

Induction of G2 arrest and binding to cyclophilin A are independent phenotypes of human immunodeficiency virus type 1 Vpr

Orly Ardon; Erik S. Zimmerman; Joshua L. Andersen; Jason L. DeHart; Jana Blackett; Vicente Planelles

ABSTRACT Cyclophilin A (CypA) is a member of a family of cellular proteins that share a peptidyl prolyl cis-trans isomerase (PPIase) activity. CypA was previously reported to be required for the biochemical stability and function (specifically, induction of G2 arrest) of the human immunodeficiency virus type 1 (HIV-1) protein R (Vpr). In the present study, we examine the role of the Vpr-CypA interaction on Vpr-induced G2 arrest. We find that Vpr coimmunoprecipitates with CypA and that this interaction is disrupted by substitution of proline-35 of Vpr as well as incubation with the CypA inhibitor cyclosporine A (CsA). Surprisingly, the presence of CypA or its binding to Vpr is dispensable for the ability of Vpr to induce G2 arrest. Vpr expression in CypA−/− cells leads to induction of G2 arrest in a manner that is indistinguishable from that in CypA+ cells. CsA abolished CypA-Vpr binding but had no effect on induction of G2 arrest or Vpr steady-state levels. In view of these results, we propose that the interaction with CypA is independent of the ability of Vpr to induce cell cycle arrest. The interaction between Vpr and CypA is intriguing, and further studies should examine its potential effects on other functions of Vpr.


Archive | 2004

Cell cycle arrest and apoptosis

Vicente Planelles; Joshua L. Andersen; Erik S. Zimmerman


Archive | 2006

Method for obtaining an enriched population of siRNA-expressing cells

Vicente Planelles; Erik S. Zimmerman; Jason L. DeHart

Collaboration


Dive into the Erik S. Zimmerman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Junjie Chen

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Baek-Hee Kim

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge