Erik Schleicher
University of Freiburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Erik Schleicher.
Science | 2011
Thomas Spatzal; Müge Aksoyoglu; Limei Zhang; Susana L. A. Andrade; Erik Schleicher; Stefan Weber; Douglas C. Rees; Oliver Einsle
Structural data show that the light atom at the center of the nitrogenase active site cofactor is a carbon. The identity of the interstitial light atom in the center of the FeMo cofactor of nitrogenase has been enigmatic since its discovery. Atomic-resolution x-ray diffraction data and an electron spin echo envelope modulation (ESEEM) analysis now provide direct evidence that the ligand is a carbon species.
Journal of Biological Chemistry | 2007
Jean-Pierre Bouly; Erik Schleicher; Maribel Dionisio-Sese; Filip Vandenbussche; Dominique Van Der Straeten; Nadia Bakrim; Stefan Meier; Alfred Batschauer; Paul Galland; Robert Bittl; Margaret Ahmad
Cryptochromes are blue light-sensing photoreceptors found in plants, animals, and humans. They are known to play key roles in the regulation of the circadian clock and in development. However, despite striking structural similarities to photolyase DNA repair enzymes, cryptochromes do not repair double-stranded DNA, and their mechanism of action is unknown. Recently, a blue light-dependent intramolecular electron transfer to the excited state flavin was characterized and proposed as the primary mechanism of light activation. The resulting formation of a stable neutral flavin semiquinone intermediate enables the photoreceptor to absorb green/yellow light (500–630 nm) in addition to blue light in vitro. Here, we demonstrate that Arabidopsis cryptochrome activation by blue light can be inhibited by green light in vivo consistent with a change of the cofactor redox state. We further characterize light-dependent changes in the cryptochrome1 (cry1) protein in living cells, which match photoreduction of the purified cry1 in vitro. These experiments were performed using fluorescence absorption/emission and EPR on whole cells and thereby represent one of the few examples of the active state of a known photoreceptor being monitored in vivo. These results indicate that cry1 activation via blue light initiates formation of a flavosemiquinone signaling state that can be converted by green light to an inactive form. In summary, cryptochrome activation via flavin photoreduction is a reversible mechanism novel to blue light photoreceptors. This photocycle may have adaptive significance for sensing the quality of the light environment in multiple organisms.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Michael Salomon; Wolfgang Eisenreich; Harald Dürr; Erik Schleicher; Elke Knieb; Vincent Massey; Wolfhart Rüdiger; Franz Müller; Adelbert Bacher; Gerald Richter
The PHOT1 (NPH1) gene from Avena sativa specifies the blue light receptor for phototropism, phototropin, which comprises two FMN-binding LOV domains and a serine/threonine protein kinase domain. Light exposure is conducive to autophosphorylation of the protein kinase domain. We have reconstituted a recombinant LOV2 domain of A. sativa phototropin with various 13C/15N-labeled isotopomers of the cofactor, FMN. The reconstituted protein samples were analyzed by NMR spectroscopy under dark and light conditions. Blue light irradiation is shown to result in the addition of a thiol group (cysteine 450) to the 4a position of the FMN chromophore. The adduct reverts spontaneously in the dark by elimination. The light-driven flavin adduct formation results in conformational modification, which was diagnosed by 1H and 31P NMR spectroscopy. This conformational change is proposed to initiate the transmission of the light signal via conformational modulation of the protein kinase domain conducive to autophosphorylation of NPH1.
Journal of Biological Chemistry | 2007
Roopa Banerjee; Erik Schleicher; Stefan Meier; Rafael Muñoz Viana; Richard Pokorny; Margaret Ahmad; Robert Bittl; Alfred Batschauer
Cryptochrome (Cry) photoreceptors share high sequence and structural similarity with DNA repair enzyme DNA-photolyase and carry the same flavin cofactor. Accordingly, DNA-photolyase was considered a model system for the light activation process of cryptochromes. In line with this view were recent spectroscopic studies on cryptochromes of the CryDASH subfamily that showed photoreduction of the flavin adenine dinucleotide (FAD) cofactor to its fully reduced form. However, CryDASH members were recently shown to have photolyase activity for cyclobutane pyrimidine dimers in single-stranded DNA, which is absent for other members of the cryptochrome/photolyase family. Thus, CryDASH may have functions different from cryptochromes. The photocycle of other members of the cryptochrome family, such as Arabidopsis Cry1 and Cry2, which lack DNA repair activity but control photomorphogenesis and flowering time, remained elusive. Here we have shown that Arabidopsis Cry2 undergoes a photocycle in which semireduced flavin (FADH·) accumulates upon blue light irradiation. Green light irradiation of Cry2 causes a change in the equilibrium of flavin oxidation states and attenuates Cry2-controlled responses such as flowering. These results demonstrate that the active form of Cry2 contains FADH· (whereas catalytically active photolyase requires fully reduced flavin (FADH-)) and suggest that cryptochromes could represent photoreceptors using flavin redox states for signaling differently from DNA-photolyase for photorepair.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Kiminori Maeda; Alexander Robinson; Kevin B. Henbest; Hannah J. Hogben; Till Biskup; Margaret Ahmad; Erik Schleicher; Stefan Weber; Christiane R. Timmel; P. J. Hore
Among the biological phenomena that fall within the emerging field of “quantum biology” is the suggestion that magnetically sensitive chemical reactions are responsible for the magnetic compass of migratory birds. It has been proposed that transient radical pairs are formed by photo-induced electron transfer reactions in cryptochrome proteins and that their coherent spin dynamics are influenced by the geomagnetic field leading to changes in the quantum yield of the signaling state of the protein. Despite a variety of supporting evidence, it is still not clear whether cryptochromes have the properties required to respond to magnetic interactions orders of magnitude weaker than the thermal energy, kBT. Here we demonstrate that the kinetics and quantum yields of photo-induced flavin—tryptophan radical pairs in cryptochrome are indeed magnetically sensitive. The mechanistic origin of the magnetic field effect is clarified, its dependence on the strength of the magnetic field measured, and the rates of relevant spin-dependent, spin-independent, and spin-decoherence processes determined. We argue that cryptochrome is fit for purpose as a chemical magnetoreceptor.
PLOS ONE | 2007
Miriam Liedvogel; Kiminori Maeda; Kevin B. Henbest; Erik Schleicher; Thomas E. Simon; Christiane R. Timmel; P. J. Hore; Henrik Mouritsen
Cryptochromes (Cry) have been suggested to form the basis of light-dependent magnetic compass orientation in birds. However, to function as magnetic compass sensors, the cryptochromes of migratory birds must possess a number of key biophysical characteristics. Most importantly, absorption of blue light must produce radical pairs with lifetimes longer than about a microsecond. Cryptochrome 1a (gwCry1a) and the photolyase-homology-region of Cry1 (gwCry1-PHR) from the migratory garden warbler were recombinantly expressed and purified from a baculovirus/Sf9 cell expression system. Transient absorption measurements show that these flavoproteins are indeed excited by light in the blue spectral range leading to the formation of radicals with millisecond lifetimes. These biophysical characteristics suggest that gwCry1a is ideally suited as a primary light-mediated, radical-pair-based magnetic compass receptor.
Angewandte Chemie | 2009
Till Biskup; Erik Schleicher; Asako Okafuji; Gerhard Link; Kenichi Hitomi; Elizabeth D. Getzoff; Stefan Weber
Proteins from the photolyase/cryptochrome family share their three-dimensional fold, sequence homology, and the redox-active flavin adenine dinucleotide (FAD) cofactor, but exhibit diverse activities.[1] In response to blue or UV-A light, they function physiologically in DNA repair, entrainment of the circadian clock, or other processes.[1-3] Members of the photolyase/cryptochrome family have been identified in various organisms ranging from bacteria to plants, animals and humans.[1] Within this family, a phylogenetic cluster of genes originally identified from Arabidopsis and Synechocystis encode cryptochrome-like proteins, which are distinct from previously characterized “classic” plant (represented by Arabidopsis HY4) or animal (represented by Drosophila and Homo sapiens) cryptochromes, yet more closely resemble the latter.[4] Remarkably, the cryptochromes from this new cluster (Cry-DASH) have now been found through all kingdoms of life.[5] While multiple biological functions have been discussed, the availability of stable, recombinantly expressed, Cry-DASH proteins from diverse species provides the means of deciphering cryptochrome protein chemistry. Results from recent experiments point to the direction that Cry-DASH could work as a transcriptional regulator,[4, 5] as well as a DNA repair enzyme for single-stranded DNA.[6] Other experimental results suggest the participation of Cry-DASH in circadian input pathways.[7, 8]
Proceedings of the National Academy of Sciences of the United States of America | 2008
Kevin B. Henbest; Kiminori Maeda; P. J. Hore; Monika Joshi; Adelbert Bacher; Robert Bittl; Stefan Weber; Christiane R. Timmel; Erik Schleicher
One of the two principal hypotheses put forward to explain the primary magnetoreception event underlying the magnetic compass sense of migratory birds is based on a magnetically sensitive chemical reaction. It has been proposed that a spin-correlated radical pair is produced photochemically in a cryptochrome and that the rates and yields of the subsequent chemical reactions depend on the orientation of the protein in the Earths magnetic field. The suitability of cryptochrome for this purpose has been argued, in part, by analogy with DNA photolyase, although no effects of applied magnetic fields have yet been reported for any member of the cryptochrome/photolyase family. Here, we demonstrate a magnetic-field effect on the photochemical yield of a flavin–tryptophan radical pair in Escherichia coli photolyase. This result provides a proof of principle that photolyases, and most likely by extension also cryptochromes, have the fundamental properties needed to form the basis of a magnetic compass.
Journal of Biological Chemistry | 2003
Christopher W. M. Kay; Erik Schleicher; Andreas Kuppig; Heidi Hofner; Wolfhart Rüdiger; Michael Schleicher; Markus Fischer; Adelbert Bacher; Stefan Weber; Gerald Richter
The LOV2 domain of Avena sativaphototropin and its C450A mutant were expressed as recombinant fusion proteins and were examined by optical spectroscopy, electron paramagnetic resonance, and electron-nuclear double resonance. Upon irradiation (420–480 nm), the LOV2 C450A mutant protein gave an optical absorption spectrum characteristic of a flavin radical even in the absence of exogenous electron donors, thus demonstrating that the flavin mononucleotide (FMN) cofactor in its photogenerated triplet state is a potent oxidant for redox-active amino acid residues within the LOV2 domain. The FMN radical in the LOV2 C450A mutant is N(5)-protonated, suggesting that the local pH close to the FMN is acidic enough so that the cysteine residue in the wild-type protein is likely to be also protonated. An electron paramagnetic resonance analysis of the photogenerated FMN radical gave information on the geometrical and electronic structure and the environment of the FMN cofactor. The experimentally determined hyperfine couplings of the FMN radical point to a highly restricted delocalization of the unpaired electron spin in the isoalloxazine moiety. In the light of these results a possible radical-pair mechanism for the formation of the FMN-C(4a)–cysteinyl adduct in LOV domains is discussed.
Journal of Biological Chemistry | 2007
Erik Schleicher; Kenichi Hitomi; Christopher W. M. Kay; Elizabeth D. Getzoff; Takeshi Todo; Stefan Weber
(6-4) photolyase catalyzes the light-dependent repair of UV-damaged DNA containing (6-4) photoproducts. Blue light excitation of the enzyme generates the neutral FAD radical, FADH·, which is believed to be transiently formed during the enzymatic DNA repair. Here (6-4) photolyase has been examined by optical spectroscopy, electron paramagnetic resonance, and pulsed electron nuclear double resonance spectroscopy. Characterization of selected proton hyperfine couplings of FADH·, namely those of H8α and H1′, yields information on the micropolarity at the site where the DNA substrate is expected to bind. Shifts in the hyperfine couplings as a function of structural modifications induced by point mutations and pH changes distinguish the protonation states of two highly conserved histidines, His354 and His358, in Xenopus laevis (6-4) photolyase. These are proposed to catalyze formation of the oxetane intermediate that precedes light-initiated DNA repair. The results show that at pH 9.5, where the enzymatic repair activity is highest, His358 is deprotonated, whereas His354 is protonated. Hence, the latter is likely the proton donor that initiates oxetane formation from the (6-4) photoproduct.