Erik Segerdell
Oregon Health & Science University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Erik Segerdell.
Nucleic Acids Research | 2003
Judy Sprague; Leyla Bayraktaroglu; Dave Clements; Tom Conlin; David Fashena; Ken Frazer; Melissa Haendel; Douglas G. Howe; Prita Mani; Kevin Schaper; Erik Segerdell; Peiran Song; Brock Sprunger; Sierra Taylor; Ceri E. Van Slyke; Monte Westerfield
The Zebrafish Information Network (ZFIN; ) is a web based community resource that implements the curation of zebrafish genetic, genomic and developmental data. ZFIN provides an integrated representation of mutants, genes, genetic markers, mapping panels, publications and community resources such as meeting announcements and contact information. Recent enhancements to ZFIN include (i) comprehensive curation of gene expression data from the literature and from directly submitted data, (ii) increased support and annotation of the genome sequence, (iii) expanded use of ontologies to support curation and query forms, (iv) curation of morpholino data from the literature, and (v) increased versatility of gene pages, with new data types, links and analysis tools.
PLOS Biology | 2015
Andrew R. Deans; Suzanna E. Lewis; Eva Huala; Salvatore S. Anzaldo; Michael Ashburner; James P. Balhoff; David C. Blackburn; Judith A. Blake; J. Gordon Burleigh; Bruno Chanet; Laurel Cooper; Mélanie Courtot; Sándor Csösz; Hong Cui; Wasila M. Dahdul; Sandip Das; T. Alexander Dececchi; Agnes Dettai; Rui Diogo; Robert E. Druzinsky; Michel Dumontier; Nico M. Franz; Frank Friedrich; George V. Gkoutos; Melissa Haendel; Luke J. Harmon; Terry F. Hayamizu; Yongqun He; Heather M. Hines; Nizar Ibrahim
Imagine if we could compute across phenotype data as easily as genomic data; this article calls for efforts to realize this vision and discusses the potential benefits.
Nucleic Acids Research | 2012
Christina James-Zorn; Virgilio G. Ponferrada; Chris J. Jarabek; Kevin A. Burns; Erik Segerdell; Jacqueline Lee; Kevin A. Snyder; Bishnu Bhattacharyya; J. Brad Karpinka; Joshua Fortriede; Jeff B. Bowes; Aaron M. Zorn; Peter D. Vize
Xenbase (http://www.xenbase.org) is a model organism database that provides genomic, molecular, cellular and developmental biology content to biomedical researchers working with the frog, Xenopus and Xenopus data to workers using other model organisms. As an amphibian Xenopus serves as a useful evolutionary bridge between invertebrates and more complex vertebrates such as birds and mammals. Xenbase content is collated from a variety of external sources using automated and semi-automated pipelines then processed via a combination of automated and manual annotation. A link-matching system allows for the wide variety of synonyms used to describe biological data on unique features, such as a gene or an anatomical entity, to be used by the database in an equivalent manner. Recent updates to the database include the Xenopus laevis genome, a new Xenopus tropicalis genome build, epigenomic data, collections of RNA and protein sequences associated with genes, more powerful gene expression searches, a community and curated wiki, an extensive set of manually annotated gene expression patterns and a new database module that contains data on over 700 antibodies that are useful for exploring Xenopus cell and developmental biology.
PLOS ONE | 2012
Wasila M. Dahdul; James P. Balhoff; David C. Blackburn; Alexander D. Diehl; Melissa Haendel; Brian K. Hall; Hilmar Lapp; John G. Lundberg; Christopher J. Mungall; Martin Ringwald; Erik Segerdell; Ceri E. Van Slyke; Matthew K. Vickaryous; Monte Westerfield; Paula M. Mabee
The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages), and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO), Gene Ontology (GO), Uberon, and Cell Ontology (CL), and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity.
Database | 2012
Nicole Vasilevsky; Tenille Johnson; Karen Corday; Carlo Torniai; Matthew H. Brush; Erik Segerdell; Melanie Wilson; Chris Shaffer; David W. Robinson; Melissa Haendel
Development of biocuration processes and guidelines for new data types or projects is a challenging task. Each project finds its way toward defining annotation standards and ensuring data consistency with varying degrees of planning and different tools to support and/or report on consistency. Further, this process may be data type specific even within the context of a single project. This article describes our experiences with eagle-i, a 2-year pilot project to develop a federated network of data repositories in which unpublished, unshared or otherwise ‘invisible’ scientific resources could be inventoried and made accessible to the scientific community. During the course of eagle-i development, the main challenges we experienced related to the difficulty of collecting and curating data while the system and the data model were simultaneously built, and a deficiency and diversity of data management strategies in the laboratories from which the source data was obtained. We discuss our approach to biocuration and the importance of improving information management strategies to the research process, specifically with regard to the inventorying and usage of research resources. Finally, we highlight the commonalities and differences between eagle-i and similar efforts with the hope that our lessons learned will assist other biocuration endeavors. Database URL: www.eagle-i.net
Journal of Biomedical Semantics | 2013
Erik Segerdell; Virgilio G. Ponferrada; Christina James-Zorn; Kevin A. Burns; Joshua Fortriede; Wasila M. Dahdul; Peter D. Vize; Aaron M. Zorn
BackgroundThe African clawed frogs Xenopus laevis and Xenopus tropicalis are prominent animal model organisms. Xenopus research contributes to the understanding of genetic, developmental and molecular mechanisms underlying human disease. The Xenopus Anatomy Ontology (XAO) reflects the anatomy and embryological development of Xenopus. The XAO provides consistent terminology that can be applied to anatomical feature descriptions along with a set of relationships that indicate how each anatomical entity is related to others in the embryo, tadpole, or adult frog. The XAO is integral to the functionality of Xenbase (http://www.xenbase.org), the Xenopus model organism database.ResultsWe significantly expanded the XAO in the last five years by adding 612 anatomical terms, 2934 relationships between them, 640 synonyms, and 547 ontology cross-references. Each term now has a definition, so database users and curators can be certain they are selecting the correct term when specifying an anatomical entity. With developmental timing information now asserted for every anatomical term, the ontology provides internal checks that ensure high-quality gene expression and phenotype data annotation. The XAO, now with 1313 defined anatomical and developmental stage terms, has been integrated with Xenbase expression and anatomy term searches and it enables links between various data types including images, clones, and publications. Improvements to the XAO structure and anatomical definitions have also enhanced cross-references to anatomy ontologies of other model organisms and humans, providing a bridge between Xenopus data and other vertebrates. The ontology is free and open to all users.ConclusionsThe expanded and improved XAO allows enhanced capture of Xenopus research data and aids mechanisms for performing complex retrieval and analysis of gene expression, phenotypes, and antibodies through text-matching and manual curation. Its comprehensive references to ontologies across taxa help integrate these data for human disease modeling.
Mechanisms of Development | 2004
Thorsten Henrich; Mirana Ramialison; Erik Segerdell; Monte Westerfield; Makoto Furutani-Seiki; Joachim Wittbrodt; Hisato Kondoh
The systematic assignment of gene function to a sequenced genome is one of the outstanding challenges in the post-genomic era. Large-scale systematic mutagenesis screens are important tools for reaching this goal. Here we describe GSD, a software package that allows storage and integration of data from genetic screens. GSD was initially developed for a large-scale F3 mutagenesis screen for developmental mutants of medaka (Oryzias latipes). The version presented here supports a wide range of different screens (mutagenesis, RNAi, morpholinos, transgenesis and others) using different organisms. Data are stored in a relational database and can be made accessible through web interfaces. Researchers can enter data describing their screened embryos: They can track statistics, submit images and describe the resulting phenotypes using a phenotype classification ontology. We developed a fish phenotype classification ontology of medaka and zebrafish for this software package and made it available to the public. In addition, a list of genetic lines resulting from each screen can be generated. These lines (mutant alleles, transgenic lines) can be described and categorized in the same ways as the screened individuals. Raw data from the screen can be integrated to describe these lines. A query module that searches this list can be used to publish the screen results on the Internet. A test version is available at and the software can be downloaded from this site.
Journal of Biomedical Semantics | 2014
Robert W. Thacker; Maria Cristina Diaz; Adeline Kerner; Régine Vignes-Lebbe; Erik Segerdell; Melissa Haendel; Christopher J. Mungall
BackgroundPorifera (sponges) are ancient basal metazoans that lack organs. They provide insight into key evolutionary transitions, such as the emergence of multicellularity and the nervous system. In addition, their ability to synthesize unusual compounds offers potential biotechnical applications. However, much of the knowledge of these organisms has not previously been codified in a machine-readable way using modern web standards.ResultsThe Porifera Ontology is intended as a standardized coding system for sponge anatomical features currently used in systematics. The ontology is available from http://purl.obolibrary.org/obo/poro.owl, or from the project homepage http://porifera-ontology.googlecode.com/. The version referred to in this manuscript is permanently available from http://purl.obolibrary.org/obo/poro/releases/2014-03-06/.ConclusionsBy standardizing character representations, we hope to facilitate more rapid description and identification of sponge taxa, to allow integration with other evolutionary database systems, and to perform character mapping across the major clades of sponges to better understand the evolution of morphological features. Future applications of the ontology will focus on creating (1) ontology-based species descriptions; (2) taxonomic keys that use the nested terms of the ontology to more quickly facilitate species identifications; and (3) methods to map anatomical characters onto molecular phylogenies of sponges. In addition to modern taxa, the ontology is being extended to include features of fossil taxa.
Nature | 2018
Jeffrey W. Tyner; Cristina E. Tognon; Daniel Bottomly; Beth Wilmot; Stephen E. Kurtz; Samantha L. Savage; Nicola Long; Anna Reister Schultz; Elie Traer; Melissa L. Abel; Anupriya Agarwal; Aurora S. Blucher; Uma Borate; Jade Bryant; Russell T. Burke; Amy S. Carlos; Richie Carpenter; Joseph Carroll; Bill H. Chang; Cody Coblentz; Amanda d’Almeida; Rachel J. Cook; Alexey V. Danilov; Kim-Hien T. Dao; Michie Degnin; Deirdre Devine; James Dibb; David K. Edwards; Christopher A. Eide; Isabel English
The implementation of targeted therapies for acute myeloid leukaemia (AML) has been challenging because of the complex mutational patterns within and across patients as well as a dearth of pharmacologic agents for most mutational events. Here we report initial findings from the Beat AML programme on a cohort of 672 tumour specimens collected from 562 patients. We assessed these specimens using whole-exome sequencing, RNA sequencing and analyses of ex vivo drug sensitivity. Our data reveal mutational events that have not previously been detected in AML. We show that the response to drugs is associated with mutational status, including instances of drug sensitivity that are specific to combinatorial mutational events. Integration with RNA sequencing also revealed gene expression signatures, which predict a role for specific gene networks in the drug response. Collectively, we have generated a dataset—accessible through the Beat AML data viewer (Vizome)—that can be leveraged to address clinical, genomic, transcriptomic and functional analyses of the biology of AML.Analyses of samples from patients with acute myeloid leukaemia reveal that drug response is associated with mutational status and gene expression; the generated dataset provides a basis for future clinical and functional studies of this disease.
Nucleic Acids Research | 2007
Judy Sprague; Leyla Bayraktaroglu; Yvonne M. Bradford; Tom Conlin; Nathan Dunn; David Fashena; Ken Frazer; Melissa Haendel; Douglas G. Howe; Jonathan Knight; Prita Mani; Sierra A. T. Moxon; Christian Pich; Kevin Schaper; Erik Segerdell; Xiang Shao; Amy Singer; Peiran Song; Brock Sprunger; Ceri E. Van Slyke; Monte Westerfield