Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erik Strandberg is active.

Publication


Featured researches published by Erik Strandberg.


FEBS Letters | 2003

Snorkeling of lysine side chains in transmembrane helices: how easy can it get?

Erik Strandberg; J. Antoinette Killian

Transmembrane segments of proteins are often flanked by lysine residues. The side chains of these residues may snorkel, i.e. they may bury themselves with their aliphatic part in the hydrophobic region of the lipid bilayer, while positioning the charged amino group in the more polar interface. Here we estimate the free energy cost of snorkeling from thermodynamical calculations based on studies with synthetic transmembrane peptides [Strandberg et al. (2002) Biochemistry 41, 7190–7198]. The value is estimated to be between 0.07 and 0.7 kcal mol−1 for a lysine side chain. This very low value indicates that snorkeling may be a common process, which should be taken into consideration both in experimental and in theoretical studies on protein–lipid interactions.


Biophysical Journal | 2002

Geometry and Intrinsic Tilt of a Tryptophan-Anchored Transmembrane α-Helix Determined by 2H NMR

Patrick C.A. van der Wel; Erik Strandberg; J. Antoinette Killian; Roger E. Koeppe

We used solid-state deuterium NMR spectroscopy and an approach involving geometric analysis of labeled alanines (GALA method) to examine the structure and orientation of a designed synthetic hydrophobic, membrane-spanning alpha-helical peptide in phosphatidylcholine (PC) bilayers. The 19-amino-acid peptide consists of an alternating leucine and alanine core, flanked by tryptophans that serve as interfacial anchors: acetyl-GWW(LA)(6)LWWA-ethanolamine (WALP19). A single deuterium-labeled alanine was introduced at different positions within the peptide. Peptides were incorporated in oriented bilayers of dilauroyl- (di-C12:0-), dimyristoyl- (di-C14:0-), or dioleoyl- (di-C18:1(c)-) phosphatidylcholine. The NMR data fit well to a WALP19 orientation characterized by a distinctly nonzero tilt, approximately 4 degrees from the membrane normal, and rapid reorientation about the membrane normal in all three lipids. Although the orientation of WALP19 varies slightly in the different lipids, hydrophobic mismatch does not seem to be the dominant factor causing the tilt. We suggest rather that the peptide itself has an inherently preferred tilted orientation, possibly related to peptide surface characteristics or the disposition of tryptophan indole anchors relative to the lipids, the peptide backbone, and the membrane/water interface. Additionally, the data allow us to define more precisely the local alanine geometry in this membrane-spanning alpha-helix.


Journal of Biological Chemistry | 2006

Synergistic Transmembrane Alignment of the Antimicrobial Heterodimer PGLa/Magainin

Pierre Tremouilhac; Erik Strandberg; Parvesh Wadhwani; Anne S. Ulrich

The antimicrobial activity of amphipathic α-helical peptides is usually attributed to the formation of pores in bacterial membranes, but direct structural information about such a membrane-bound state is sparse. Solid state 2H-NMR has previously shown that the antimicrobial peptide PGLa undergoes a concentration-dependent realignment from a surface-bound S-state to a tilted T-state. The corresponding change in helix tilt angle from 98 to 125° was interpreted as the formation of PGLa/magainin heterodimers residing on the bilayer surface. Under no conditions so far, has an upright membrane-inserted I-state been observed in which a transmembrane helix alignment would be expected. Here, we have demonstrated that PGLa is able to assume such an I-state in a 1:1 mixture with magainin 2 at a peptide-to-lipid ratio as low as 1:100 in dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol model membranes. This 2H-NMR analysis is based on seven orientational constraints from Ala-3,3,3-d3 substituted in a non-perturbing manner for four native Ala residues as well as two Ile and one Gly. The observed helix tilt of 158° is rationalized by the formation of heterodimers. This structurally synergistic effect between the two related peptides from the skin of Xenopus laevis correlates very well with their known functional synergistic mode of action. To our knowledge, this example of PGLa is the first case where an α-helical antimicrobial peptide is directly shown to assume a transmembrane state that is compatible with the postulated toroidal wormhole pore structure.


Biophysical Journal | 1997

Influence of membrane-spanning alpha-helical peptides on the phase behavior of the dioleoylphosphatidylcholine/water system.

S. Morein; Erik Strandberg; J.A. Killian; Stefan Persson; G. Arvidson; R.E. Koeppe; G. Lindblom

The effect of solubilized hydrophobic peptides on the phase behavior of dioleoylphosphatidylcholine (DOPC)/water system was studied by 2H- and 31P-NMR spectroscopy and by x-ray diffraction, and partial phase diagrams were constructed. The utilized peptides were HCO-AWW(LA)5WWA-NHCH2CH2OH (WALP16), which is an artificial peptide designed to resemble a transmembrane part of a membrane protein; and VEYAGIALFFVAAVLTLWSMLQYLSAAR (Pgs peptide E), a peptide that is identical to one of the putative transmembrane segments of the membrane-associated protein phosphatidylglycerophosphate synthase (Pgs) in Escherichia coli. Circular dichroism spectroscopy suggests that both peptides are mostly alpha-helical in DOPC vesicles. The most striking features in the phase diagram of the WALP16/DOPC/water system are 1) a single lamellar liquid crystalline (L alpha) phase forms only at very low peptide concentrations. 2) At low water content and above a peptide/lipid molar ratio of approximately 1:75 a reversed hexagonal liquid crystalline (H[II]) phase coexists with an L alpha phase, while in excess water this phase forms at a peptide/lipid molar ratio of approximately 1:25. 3) At peptide/lipid ratios > or =1:6 a single H(II) phase is stable. Also, the Pgs peptide E strongly affects the phase behavior, and a single L alpha phase is only found at low peptide concentrations (peptide/lipid molar ratios <1:50), and water concentrations <45% (w/w). Higher peptide content results in coexistence of L alpha and isotropic phases. Generally, the fraction of the isotropic phase increases with increasing temperature and water concentration, and at 80% (w/w) water content only a single isotropic phase is stable at 55 degrees C. Thus, both peptides were found to be able to induce nonlamellar phases, although different in structure, in the DOPC/water system. The phase transitions, the extensions of the one-phase regions, and the phase structures observed for the two systems are discussed in terms of the molecular structure of the two peptides and the matching between the hydrophobic lengths of the peptides and the bilayer thickness of DOPC.


Journal of the American Chemical Society | 2012

Self-assembly of flexible β-strands into immobile amyloid-like β-sheets in membranes as revealed by solid-state 19F NMR.

Parvesh Wadhwani; Erik Strandberg; Nico Heidenreich; Jochen Bürck; Susanne Fanghänel; Anne S. Ulrich

The cationic peptide [KIGAKI](3) was designed as an amphiphilic β-strand and serves as a model for β-sheet aggregation in membranes. Here, we have characterized its molecular conformation, membrane alignment, and dynamic behavior using solid-state (19)F NMR. A detailed structure analysis of selectively (19)F-labeled peptides was carried out in oriented DMPC bilayers. It showed a concentration-dependent transition from monomeric β-strands to oligomeric β-sheets. In both states, the rigid (19)F-labeled side chains project straight into the lipid bilayer but they experience very different mobilities. At low peptide-to-lipid ratios ≤1:400, monomeric [KIGAKI](3) swims around freely on the membrane surface and undergoes considerable motional averaging, with essentially uncoupled φ/ψ torsion angles. The flexibility of the peptide backbone in this 2D plane is reminiscent of intrinsically unstructured proteins in 3D. At high concentrations, [KIGAKI](3) self-assembles into immobilized β-sheets, which are untwisted and lie flat on the membrane surface as amyloid-like fibrils. This is the first time the transition of monomeric β-strands into oligomeric β-sheets has been characterized by solid-state NMR in lipid bilayers. It promises to be a valuable approach for studying membrane-induced amyloid formation of many other, clinically relevant peptide systems.


Biochemistry | 2008

Solid-state NMR analysis comparing the designer-made antibiotic MSI-103 with its parent peptide PGLa in lipid bilayers.

Erik Strandberg; Nathalie Kanithasen; Deniz Tiltak; Jochen Bürck; Parvesh Wadhwani; Olaf Zwernemann; Anne S. Ulrich

The amphiphilic alpha-helical peptide (KIAGKIA)3-NH2 (MSI-103) is a designer-made antibiotic, based on the natural sequence of PGLa from Xenopus laevis. Here, we have characterized the concentration-dependent alignment and dynamic behavior of MSI-103 in lipid membranes by solid-state 2H and 19F NMR, using orientational constraints from seven Ala-d3-labeled analogues and five 4-CF3-phenylglycine labels. As previously found for PGLa, MSI-103, too, assumes a flat surface-bound S-state alignment at low peptide concentrations, and it also realigns to a tilted T-state at higher concentrations. For PGLa, the stability of the T-state had been attributed to the specific assembly of antiparallel dimers; hence, it is remarkable that the artificial KIAGKIA repeat sequence can also dimerize in the same way in liquid crystalline lipid bilayers. Oriented circular dichroism analysis shows that for MSI-103 the threshold for realignment from the S-state to the T-state is approximately 3-fold lower than for PGLa (at a peptide-to-lipid ratio of 1:240 in dimyristoylphosphatidylcholine, compared to 1:80). Furthermore, MSI-103 becomes laterally immobilized in the lipid bilayer at a concentration ratio of 1:50, which occurs for PGLa only above 1:20. The superior antimicrobial activity of MSI-103 over PGLa thus appears to correlate with its stronger tendency to realign and self-assemble. The hemolytic activities of MSI-103 and its analogues, on the other hand, are shown here to correlate purely with the respective changes in hydrophobicity.


Pure and Applied Chemistry | 2007

Influence of C-terminal amidation on the antimicrobial and hemolytic activities of cationic α-helical peptides

Erik Strandberg; Deniz Tiltak; Marco Ieronimo; Nathalie Kanithasen; Parvesh Wadhwani; Anne S. Ulrich

The effect of C-terminal amidation on the antimicrobial and hemolytic activities of antimicrobial peptides was studied using three cationic peptides which form amphiphilic α-helices when bound to membranes. The natural antimicrobial peptide PGLa, the designer-made antibiotic MSI-103, and the cell-penetrating model amphipathic peptide (MAP) are all amidated in their original forms, and their biological activities were compared with the same sequences carrying a free C-terminus. It was found that, in general, a free COOH-terminus reduces both the antimicrobial activity and the hemolytic side effects of the peptides. The only exception was observed for MSI-103, whose antimicrobial activity was not decreased in the acid form. Having shown that the therapeutic index (TI) of this novel peptide is significantly higher than for the other tested peptides, with high antibiotic activity and little undesired effects, we suggest that it could be a useful starting point for further development of new peptide antibiotics.


Biochimica et Biophysica Acta | 2014

Dynamical structure of the short multifunctional peptide BP100 in membranes.

Parvesh Wadhwani; Erik Strandberg; Jonas van den Berg; Christian Mink; Jochen Bürck; Raffaele Ciriello; Anne S. Ulrich

BP100 is a multifunctional membrane-active peptide of only 11 amino acids, with a high antimicrobial activity, an efficient cell-penetrating ability, and low hemolytic side-effects. It forms an amphiphilic α-helix, similar to other antimicrobial peptides like magainin. However, BP100 is very short and thus unlikely to form membrane-spanning pores as proposed for longer peptides as a mechanism of action. We thus studied the conformation, membrane alignment and dynamical behavior of BP100 in lipid bilayers (DMPC/DMPG), using oriented circular dichroism (OCD) and solid-state (19)F and (15)N NMR. According to OCD and (15)N NMR, the BP100 helix is oriented roughly parallel to the membrane surface, but these methods yield no information on the azimuthal alignment angle or the dynamics of the molecule. To address these questions, a systematic (19)F NMR analysis was performed, which was not straightforward for this short peptide. Only a limited number of positions could be (19)F-labeled, all of which are located on one face of the helix, which was found to lead to artifacts in the data analysis. It was nevertheless possible to reconcile the (19)F NMR data with the OCD and (15)N NMR data by using an advanced dynamical model, in which peptide mobility is described by fluctuating tilt and azimuthal angles with Gaussian distributions. (19)F NMR thus confirmed the regular α-helical conformation of BP100, revealed its azimuthal angle, and described its high mobility in the membrane. Furthermore, the very sensitive (19)F NMR experiments showed that the alignment of BP100 does not vary with peptide concentration over a peptide-to-lipid molar ratio from 1:10 to 1:3000.


PLOS ONE | 2014

Structure Analysis and Conformational Transitions of the Cell Penetrating Peptide Transportan 10 in the Membrane-Bound State

Susanne Fanghänel; Parvesh Wadhwani; Erik Strandberg; Wouter P. R. Verdurmen; Jochen Bürck; Sebastian Ehni; Pavel K. Mykhailiuk; Sergii Afonin; D. Gerthsen; Igor V. Komarov; Roland Brock; Anne S. Ulrich

Structure analysis of the cell-penetrating peptide transportan 10 (TP10) revealed an exemplary range of different conformations in the membrane-bound state. The bipartite peptide (derived N-terminally from galanin and C-terminally from mastoparan) was found to exhibit prominent characteristics of (i) amphiphilic α-helices, (ii) intrinsically disordered peptides, as well as (iii) β-pleated amyloid fibrils, and these conformational states become interconverted as a function of concentration. We used a complementary approach of solid-state 19F-NMR and circular dichroism in oriented membrane samples to characterize the structural and dynamical behaviour of TP10 in its monomeric and aggregated forms. Nine different positions in the peptide were selectively substituted with either the L - or D -enantiomer of 3-(trifluoromethyl)-bicyclopent-[1.1.1]-1-ylglycine (CF3 -Bpg) as a reporter group for 19F-NMR. Using the L -epimeric analogs, a comprehensive three-dimensional structure analysis was carried out in lipid bilayers at low peptide concentration, where TP10 is monomeric. While the N-terminal region is flexible and intrinsically unstructured within the plane of the lipid bilayer, the C-terminal α-helix is embedded in the membrane with an oblique tilt angle of ∼55° and in accordance with its amphiphilic profile. Incorporation of the sterically obstructive D -CF3 -Bpg reporter group into the helical region leads to a local unfolding of the membrane-bound peptide. At high concentration, these helix-destabilizing C-terminal substitutions promote aggregation into immobile β-sheets, which resemble amyloid fibrils. On the other hand, the obstructive D -CF3 -Bpg substitutions can be accommodated in the flexible N-terminus of TP10 where they do not promote aggregation at high concentration. The cross-talk between the two regions of TP10 thus exerts a delicate balance on its conformational switch, as the presence of the α-helix counteracts the tendency of the unfolded N-terminus to self-assemble into β-pleated fibrils.


Scientific Reports | 2015

Hydrophobic mismatch demonstrated for membranolytic peptides, and their use as molecular rulers to measure bilayer thickness in native cells

Ariadna Grau-Campistany; Erik Strandberg; Parvesh Wadhwani; Johannes Reichert; Jochen Bürck; Francesc Rabanal; Anne S. Ulrich

Hydrophobic mismatch is a well-recognized principle in the interaction of transmembrane proteins with lipid bilayers. This concept was extended here to amphipathic membranolytic α-helices. Nine peptides with lengths between 14 and 28 amino acids were designed from repeated KIAGKIA motifs, and their helical nature was confirmed by circular dichroism spectroscopy. Biological assays for antimicrobial activity and hemolysis, as well as fluorescence vesicle leakage and solid-state NMR spectroscopy, were used to correlate peptide length with membranolytic activity. These data show that the formation of transmembrane pores is only possible under the condition of hydrophobic matching: the peptides have to be long enough to span the hydrophobic bilayer core to be able to induce vesicle leakage, kill bacteria, and cause hemolysis. By correlating the threshold lengths for biological activity with the biophysical results on model vesicles, the peptides could be utilized as molecular rulers to measure the membrane thickness in different cells.

Collaboration


Dive into the Erik Strandberg's collaboration.

Top Co-Authors

Avatar

Anne S. Ulrich

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Parvesh Wadhwani

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jochen Bürck

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Johannes Reichert

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Pierre Tremouilhac

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deniz Tiltak

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jonathan Zerweck

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Sergii Afonin

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Sebastian Ehni

Karlsruhe Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge