Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erik T. Nilsen is active.

Publication


Featured researches published by Erik T. Nilsen.


Oecologia | 1983

Estimates of N2-fixation from variation in the natural abundance of 15N in Sonoran desert ecosystems

Georgia Shearer; Daniel H. Kohl; Ross A. Virginia; Barbara A. Bryan; J. L. Skeeters; Erik T. Nilsen; M.R. Sharifi; Philip W. Rundel

SummaryThe 15N abundance of tissues of five Prosopis specimens at our primary study site (a Prosopis woodland at Harpers Well in the Sonoran desert of Southern California) was determined over two growing seasons 1980 and 1981. The 15N abundance of soil and of tissues of presumed non-N2-fixing (control) plants was also measured. Prosopis tissues were significantly lower in 15N than either soil N or corresponding tissues of presumed non-N2-fixing plants which derive their N entirely from soil. Soil N was also significantly higher in 15N than atmospheric N2. We conclude that it is feasible to use variations in the natural abundance of 15N as an index of N2-fixation in this kind of ecosystem, and that N2-fixation is of considerable importance to Prosopis growing at this site.We also determined the 15N abundance of leaf tissue of presumed N2-fixing and control plants growing at the same site at six additional sites (five in the Sonoran desert of southern California and one in Baja California, Mexico near the town of Catavina). Four of these additional sites were dominated by Prosopis and two were mixed communities. There were statistically significant differences between the 15N abundances of the pooled legume population and control plants at all sites, although not every legume specimen exhibited this difference. From 15N abundance data we estimated the fractional contribution of biologically fixed N to the N economy of desert legumes. We concluded that N2-fixation is very important to Prosopis at six of seven sites in the Sonoran Desert. At the site where Prosopis did not appear to be fixing N2, N2-fixation was important only for legumes of the sub-family Papilionoideae, Lupinus, Dalea, Astragalus and Lotus.


Critical Reviews in Plant Sciences | 2003

Bioassays and Field Studies for Allelopathy in Terrestrial Plants: Progress and Problems

Inderjit; Erik T. Nilsen

Bioassays are an integral part of allelopathy research. The unsuitability of laboratory bioassays to explain field situations is discussed previously. In this article, we discuss progress in bioassay experimental design and several unresolved problems associated with research on allelopathy. The objectives of this article are to discuss problems related to (1) collection of allelopathic material for bioassay, (2) allelochemical quantification in bioassays, (3) selection of concentration of allelochemicals in bioassay, (4) selection of appropriate control, (5) interaction between allelochemicals and other substances, and (6) in situ allelochemical bioassays. We concluded that new experimental designs for in situ bioassay are needed that can account for the large number of confounding factors in a complex field environment, and can be linked to physiological monitoring of target species and biochemical monitoring of the growth medium. Referee: Dr. Stella Elakovich, Dept. of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS 390406-5043


American Midland Naturalist | 2001

Does Rhododendron maximum L. ( Ericaceae ) Reduce the Availibility of Resources Above and Belowground for Canopy Tree Seedlings

Erik T. Nilsen; Barton D. Clinton; T.T. Lei; O.K. Miller; S.W. Semones; J.F. Walker

Abstract Subcanopy shrubs and perennial herbs inhibit recruitment of canopy trees in forests around the world. Although this phenomenon is widespread, and can have significant effects on community dynamics, the mechanisms of inhibition are not well understood. In the southern Appalachian region, Rhododendron maximum inhibits the recruitment of canopy trees in forests of northern red oak (Quercus rubra). We have shown, in previous research, that processes occurring before canopy tree seed germination are not responsible for this inhibition. Therefore, post-germination processes, such as competition for resources are most important. In this study we show that the presence of a thicket of R. maximum in the understory reduced the availability of light by 80%, the frequency and duration of sunflecks by 96%, the availability of water by 20% and the availability of several soil nutrients (particularly cations) by variable amounts. Moreover, the survival of Q. rubra seedlings in the understory over 3 y was significantly reduced (by about 40%) in the presence of a R. maximum thicket compared with forest without a thicket. Seedling survival was positively associated with light availability, but the slope and intercept of that relationship was different in forest with or without R. maximum. Therefore, belowground processes are involved in reduced seedling survival under the R. maximum thicket. The resources most associated with survival of Q. rubra seedlings were water and light. Although many soil nutrients were significantly lower in forest with R. maximum than in forest without R. maximum, no individual nutrient was a significant covariate with Q. rubra survivorship. Our data indicate that competition for resources both above- and belowground is an important mechanism for inhibition of canopy tree recruitment by R. maximum. Light is important to seedling survival, but is not the only important factor. Water availability and the ability to accumulate soil nutrients are equally or more important than light to survival of canopy tree seedlings in the presence of a subcanopy thicket of R. maximum.


Ecology | 1984

Comparative Water Relations of Phreatophytes in the Sonoran Desert of California

Erik T. Nilsen; M. Rasoul Sharifi; Philip W. Rundel

The seasonal and diurnal water relations were compared among six desert phreatophytes, two evergreen shrubs, and one deciduous shrub. All species were located in one wash woodland in the Sonoran Desert of southern California. There are several mechanisms by which these phreatophytes have adapted to the desert environment. One group of winter-deciduous phreatophytes (Olneya tesota, Prosopis glandulosa, and Acacia greggii) experienced summer midday leaf water potentials below -4.0 MPa. These phreatophytes had a series of physiological mechanisms for tolerating summer water stress, including seasonal and diurnal osmotic adjustment and the maintenance of high leaf conduc- tance at low leaf water potential. Osmotic adjustment of these three phreatophytes was similar to or greater than that of two evergreen species (Larrea tridentata and Simmondsia chinensis). Dalea spinosa, a stem-photosynthetic phreatophyte, avoided water stress by maintaining a very small leaf area. The summer-deciduous phreatophytes (Hyptis emoryi, and Chilopsis linearis) demonstrated mechanisms of drought avoidance such as change in leaf biomass and low summer leaf conductance. Little osmotic adjustment occurred in the summer-deciduous phreatophytes. The phreatophytic species studied in this investigation have evolved adaptations to water stress that are similar to those of deciduous and evergreen shrubs of the Sonoran Desert. Desert phreatophytes are a complex group of species with varied adaptive mechanisms to tolerate or avoid drought and should not be considered simply as a group of species that avoid desert water stress by utilizing deep ground water unavailable to other desert species of drought tolerance and avoidance.


American Journal of Botany | 1999

INHIBITION OF SEEDLING SURVIVAL UNDER RHODODENDRON MAXIMUM (ERICACEAE) : COULD ALLELOPATHY BE A CAUSE?

Erik T. Nilsen; John F. Walker; Orson K. Miller; Shawn W. Semones; Thomas T. Lei; Barton D. Clinton

In the southern Appalachian mountains a subcanopy species, Rhododendron maximum, inhibits the establishment and survival of canopy tree seedlings. One of the mechanisms by which seedlings could be inhibited is an allelopathic effect of decomposing litter or leachate from the canopy of R. maximum (R.m.) on seed germination, root elongation, or mycorrhizal colonization. The potential for allelopathy by R.m. was tested with two bioassay species (lettuce and cress), with seeds from four native tree species, and with three ectomycorrhizal fungi. Inhibitory influences of throughfall, fresh litter, and decomposed litter (organic layer) from forest with R.m. (+R.m. sites) were compared to similar extractions made from forest without R.m. (-R.m. sites). Throughfall and leachates of the organic layer from both +R.m. and -R.m. sites stimulated germination of the bioassay species above that of the distilled water control, to a similar extent. There was an inhibitory effect of leachates of litter from +R.m. sites on seed germination and root elongation rate of both bioassay species compared with that of litter from -R.m. sites. Native tree seed stratified in forest floor material from both forest types had a slightly higher seed germination rate compared with the control. A 2-yr study of seed germination and seedling mortality of two tree species, Quercus rubra and Prunus serotina, in field plots showed no significant influence of litter or organic layer from either forest type. Incorporating R.m. leaf material into the growth medium in vitro depressed growth of one ectomycorrhizal species but did not affect two other species. Leaf material from other deciduous tree species depressed ectomycorrhizal growth to a similar or greater extent as leaf material from R.m. In conclusion, R.m. litter can have an allelopathic effect on seed germination and root elongation of bioassay species as well as some ectomycorrhizal species. However, this allelopathic affect is not manifest in field sites and is not likely to be an important cause for the inhibition of seedling survival within thickets of R.m.


Plant and Soil | 1982

Seasonal dynamics of nitrogen cycling for a Prosopis woodland in the Sonoran Desert@@@Dinamica estacional del ciclo de nitrógeno de un bosque de Prosopis en el desierto Sonorense

Philip W. Rundel; Erik T. Nilsen; M. R. Sharifi; Ross A. Virginia; W. M. Jarrell; Daniel H. Kohl; Georgia Shearer

Prosopis woodlands in the Sonoran Desert have levels of above-ground biomass and productivity much higher than those predicted for desert plant communities with such low levels of precipitation. A stand ofP. glandulosa near the Salton Sea, California, has 13,000 kg ha−1 aboveground biomass and a productivity of 3700 kg ha−1 yr−1. Such a high level of productivity is possible because Prosopis is decoupled from the normal limiting factors of water and nitrogen availability. Soil nitrogen contents for the upper 60 cm of soil beneath Prosopis canopies have 1020 g m−2 total nitrogen, 25 per cent of which is in the form of nitrate. Such accumulations of nitrogen may be the result of active symbiotic nitrogen fixation. Early estimates suggest that about 25–30 kg N ha−1 yr−1 is fixed in these stands. Since Prosopis covers only 34% of the ground surface and its water resources are not limiting, much higher levels of nitrogen fixation and productivity may be possible in managed stands at greater densities.ResumenLos bosques de Prosopis en el desierto Sonorense tienen niveles de producción de biomasa (parte aérea) y productividad mucho mayores que las predecibles para comunidades de plantas de desierto con muy bajos niveles de precipitación. Los bosques freatofiticos deP. glandulosa cerca del Mar de Salton, California, producen 13 000 kg ha−1 de biomasa aérea con una productividad 3700 kg ha−1 año−1. Tan alto nivel de productividad es posible porque Prosopis no es afectado por los factores que limitan la aprovechabilidad de agua y nitrógeno.Los primeros 60 cm del perfil del suelo bajo el dosel de Prosopis contienen 1020 g m−2 de nitrógeno total, el 25% existe en la forma de nitrato. Tales acumulaciones de nitrógeno pueden ser el resultado de la fijación simbiótica activa. Los primeros valores estimados sugieren que son fijados entre 25–30 kg N ha−1 año−1 en estos bosques. Puesto que Prosopis cubre solamente 34% de esta área y sus recursos de agua no son limitantes, puede ser posible la obtención de mayores niveles de fijación de nitrógeno y productividad de los cultivos si se manejan con mayores densidades.


Oecologia | 1988

Effects of manipulation of water and nitrogen regime on the water relations of the desert shrub Larrea tridentata

F. C. Meinzer; M. R. Sharifi; Erik T. Nilsen; Philip W. Rundel

SummaryWater and nitrogen regimes of Larrea tridentata shrubs growing in the field were manipulated during an annual cycle. Patterns of leaf water status, leaf water relations characteristics, and stomatal behavior were followed concurrently. Large variations in leaf water status in both irrigated and nonirrigated individuals were observed. Predawn and midday leaf water potentials of nonirrigated shrubs were lowest except when measurements had been preceded by significant rainfall. Despite the large seasonal variation in leaf water status, reasonably constant, high levels of turgor were maintained. Pressure-volume curve analysis suggested that changes in the bulk leaf osmotic potential at full turgor were small and that nearly all of the turgor adjustment was due to tissue elastic adjustment. The increase in tissue elasticity with increasing water deficit manifested itself as a decrease in the relative water content at zero turgor and as a decrease in the tissue bulk elastic modulus. Because of large hydration-induced displacement in the osmotic potential and relative water content at zero turgor, it was necessary to use shoots in their natural state of hydration for pressure-volume curve determinations. Large diurnal and seasonal differences in maximum stomatal conductance were observed, but could not easily be attributed to variations in leaf water potential or leaf water relations characteristics such as the turgor loss point. The single factor which seemed to account for most of the diurnal and seasonal differences in maximum stomatal conductance between individual shrubs was an index of soil/root/ shoot hydraulic resistance. Daily maximum stomatal conductance was found to decrease with increasing soil/root/ shoot hydraulic resistance. This pattern was most consistent if the hydraulic resistance calculation was based on an estimate of total canopy transpiration rather than the more commonly used transpiration per unit leaf area. The reasons for this are discussed. It is suggested that while stomatal aperture necessarily represents a major physical resistance controlling transpiration, plant hydraulic resistance may represent the functional resistance through its effects on stomatal aperture.


Ecological Monographs | 1981

Phenology of the Drought-Deciduous Shrub Lotus scoparius: Climatic Controls and Adaptive Significance

Erik T. Nilsen; Walter H. Muller

In regions of Mediterranean climate drought deciduousness has been considered an important adaptation for many species. This investigation focuses on the influences of a Mediterranean climate on the phenology of a drought-deciduous shrub Lotus scoparius ssp. scoparius. Two research sites were chosen in the Santa Ynez mountains northwest of Santa Barbara, Cali- fornia for the field investigations. Phenological progressions of leaf production, leaf composition, shoot elongation, lateral branch production, and flowering in even-aged stands of Lotus scoparius were correlated with such factors as temperature, relative humidity, soil moisture, plant water rela- tions, and photoperiod. These correlations were determined during a characteristic and uncharacter- istic growing season for this mediterranean-climate region. Field correlations were the basis for the design of laboratory experiments in which the influences of photoperiod, temperature, water stress, and total daily photon flux on the phenological development of Lotus scoparius were studied. Climatic controls over Lotus scoparius phenology are complex with water relations and photo- period having the greatest influence. Photoperiodic control over leaf abscission during water stress, and leaf production following dormancy, were two important phenological phenomena related to the unpredictably fluctuating Mediterranean climate of southern California. The complex climatic control over phenology in Lotus scoparius constitutes an adaptation to the California mediterranean climate.


American Midland Naturalist | 2003

Analysis of Spatial Patterns and Spatial Association between the Invasive Tree-of-Heaven (Ailanthus altissima) and the Native Black Locust (Robinia pseudoacacia)

Lara J. Call; Erik T. Nilsen

Abstract Invasive exotic plants can persist and successfully spread within ecosystems and negatively affect the recruitment of native species. The exotic invasive Ailanthus altissima and the native Robinia pseudoacacia are frequently found in disturbed sites and exhibit similar growth and reproductive characteristics, yet each has distinct functional roles such as allelopathy and nitrogen fixation, respectively. Spatial point pattern analysis of trees in a silvicultural experiment was used to analyze the potential intraspecific and interspecific interference between these two species by looking at their individual spatial distribution and their spatial association. Analysis of spatial point patterns in the field with Ripleys K indicated that A. altissima and R. pseudoacacia were positively associated with each other along the highly disturbed skid trails in the majority of the field sites. Robinia pseudoacacia was clumped in the majority of the sites, whereas A. altissima was randomly distributed in most sites. Locally, increased disturbances could lead to more opportunities for A. altissima to invade, interact with R. pseudoacacia and other native species and potentially have an effect on the native plant community.


International Journal of Plant Sciences | 2002

Effects of Rhododendron maximum Thickets on Tree Seed Dispersal, Seedling Morphology, and Survivorship

Thomas T. Lei; Shawn W. Semones; John F. Walker; Barton D. Clinton; Erik T. Nilsen

In the southern Appalachian forests, the regeneration of canopy trees is severely inhibited by Rhododendron maximum L., an evergreen understory shrub producing dense thickets. While light availability is a major cause, other factors may also contribute to the absence of tree seedlings under R. maximum. We examined the effects of R. maximum on several life history stages of tree species, including seed dispersal, seed bank germination, seedling growth, and survivorship. We found no significant effect of R. maximum on seed reaching the forest floor for Acer rubrum, Liriodendron tulipifera, Quercus rubra, Quercus prinus, Carya spp., and Nyssa sylvatica. This indicates that either seed output of maternal trees rooted within the thicket were unaffected by R. maximum or seed dispersal from surrounding areas into thickets compensated for a lower seed production of canopy trees rooted in the thickets. Germination of tree seeds (A. rubrum, L. tulipifera, Q. rubra, and Betula lenta) from the seed bank also was not reduced by leaves and substrates within the thickets. Seedling mortality of all species (Q. rubra, Prunus serotina, and Tsuga canadensis) planted in our experimental plots was up to fivefold higher in thickets of R. maximum compared with those outside the thickets. The order of mortality under the R. maximum thickets, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape

Collaboration


Dive into the Erik T. Nilsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. R. Sharifi

University of California

View shared research outputs
Top Co-Authors

Avatar

Barton D. Clinton

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. M. Jarrell

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge