Erik Valentine Bachtiar
ETH Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Erik Valentine Bachtiar.
European Journal of Wood and Wood Products | 2017
Jiali Jiang; Erik Valentine Bachtiar; Jianxiong Lu; Peter Niemz
Elastic and strength properties are very important material characteristics in mechanical modelling. Due to the anisotropic and hygroscopic nature of wood, a characterization of wood mechanical behavior will require knowledge of its moisture-dependent properties in relation to the three principal axes of anisotropy. The influence of moisture content (MC) on the elastic and strength anisotropy of Chinese fir (Cunninghamia lanceolata [Lamb.] Hook) wood was examined in the present study. Selected parameters, including the anisotropic Young’s moduli, shear moduli, Poisson’s ratios, yield and ultimate stress values in the longitudinal, radial and tangential directions, were determined in compression and tension tests at different moisture conditions. The results indicated that a distinct moisture dependency is exhibited for the elastic and strength behavior of Chinese fir wood. With the exception of some Poisson’s ratios, all investigated elastic and strength parameters were shown to decrease with increasing MC, whereby individual moduli and strength values were affected by the MC to different degrees. The two- and three-dimensional representation of the compliance matrix and the two-dimensional visualization of a yield surface give a valuable overview on the moisture-dependent elastic and strength anisotropy of Chinese fir wood.
Holzforschung | 2017
Koji Murata; Erik Valentine Bachtiar; Peter Niemz
Abstract Two specimen types, each from walnut and cherry wood, were prepared for tangential-radial (TR) and radial-tangential (RT) crack propagation systems at 65% of RH and 20°C before mode I and mode II fracture toughness was determined through Arcan tests. It was found that fracture toughness in mode I is in agreement with literature data. In the mode II test, however, the crack propagated in the direction normal to the shear plane and not parallel to it. The release rate of strain energy in terms of the opening failure in mode II was lower than that in mode I. It can be concluded that it is difficult to determine the fracture toughness of RT or TR propagation in hardwood specimens in mode II.
Holzforschung | 2017
Erik Valentine Bachtiar; Markus Rüggeberg; Peter Niemz
Abstract The mechanical properties of walnut (Juglans regia L.) and cherry (Prunus avium L.) woods, as frequent raw materials in cultural heritage objects, have been investigated as a function of the anatomical directions and the moisture content (MC). The strength data are decreasing with increasing MC, whereas the tensile strength in the longitudinal direction is higher by factors of 1.5–2 compared to the compression strength. Moreover, the inequality of tensile and compressive stiffness is discussed, which is a matter of debate since a long time. This so-called bimodular behavior is difficult to describe in a generalized mode due to the high data variability if tension and compression properties are analyzed on different samples. If tensile and compressive stiffness tests are performed on the same samples of walnut and cherry wood, the ratio between these properties is significantly higher than 1.
Holzforschung | 2017
Erik Valentine Bachtiar; Gaspard Clerc; Andreas J. Brunner; Michael Kaliske; Peter Niemz
Abstract Investigations of quasi-static and fatigue failure in glued wooden joints subjected to tensile shear loading are presented. Lap joints of beech wood (Fagus sylvatica L.) connected with four different types of adhesives, i.e. polyurethane (PUR), melamine urea formaldehyde (MUF), bone glue and fish glue, were experimentally tested until the specimens failed. The average shear strengths obtained from the quasi-static test ranged from 12.2 to 13.4 MPa. These results do not indicate any influence of the different adhesive types. The influence of the adhesives is only visible from the results of the fatigue tests, which were carried out under different stress excitation levels between 45% and 75% of the shear strength. Specimens bound with ductile adhesive (PUR) showed a slightly higher number of cycles to failure (Nf) at low-stress levels and lower Nf at high-stress levels in comparison to more brittle adhesives (MUF, fish glue). In general, the performances of animal glues and MUF were similar in both quasi-static and fatigue loading under dry conditions.
European Journal of Wood and Wood Products | 2018
Jiali Jiang; Erik Valentine Bachtiar; Jianxiong Lu; Peter Niemz
Wood with distinctively different properties in the longitudinal, radial and tangential directions exhibits a strong moisture-dependent material characteristic in the elastic range. The purpose of this study was to analyze the orthotropic elastic properties of Chinese fir wood [Cunninghamia lanceolata (Lamb.) Hook] determined at different moisture conditions using an ultrasonic wave propagation method. The results were compared with those obtained by the traditional static compression or tension tests. The results confirm that the stiffness coefficients obtained by the ultrasound without considering the complete stiffness matrix show significantly higher values than the compression or tension Young’s moduli in all the three anatomical directions at each specific MC. The differences between stiffness coefficients and Young’s moduli were significantly reduced by corrections with Poisson ratio. Only in tangential direction, the Young’s moduli with Poisson ratio correction are statistically equivalent to the Young’s moduli obtained by compression and tension.
Wood Science and Technology | 2017
Erik Valentine Bachtiar; Sergio J. Sanabria; Johannes P. Mittig; Peter Niemz
Energy and Buildings | 2018
C. Vailati; Erik Valentine Bachtiar; Philipp Hass; Ingo Burgert; Markus Rüggeberg
Materials and Structures | 2017
Erik Valentine Bachtiar; Markus Rüggeberg; Stefan Hering; Michael Kaliske; Peter Niemz
Green Chemistry | 2018
Huizhang Guo; Erik Valentine Bachtiar; Javier Ribera; Markus Heeb; Francis W. M. R. Schwarze; Ingo Burgert
Bioresources | 2017
Daniel Konopka; Erik Valentine Bachtiar; Peter Niemz; Michael Kaliske
Collaboration
Dive into the Erik Valentine Bachtiar's collaboration.
Swiss Federal Laboratories for Materials Science and Technology
View shared research outputsSwiss Federal Laboratories for Materials Science and Technology
View shared research outputsSwiss Federal Laboratories for Materials Science and Technology
View shared research outputsSwiss Federal Laboratories for Materials Science and Technology
View shared research outputsSwiss Federal Laboratories for Materials Science and Technology
View shared research outputs