Erik Van der Giessen
University of Groningen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Erik Van der Giessen.
Journal of Applied Physics | 2003
Lucia Nicola; Erik Van der Giessen; A. Needleman
A discrete dislocation plasticity analysis of plastic deformation in metal thin films caused by thermal stress is carried out. The calculations use a two-dimensional plane-strain formulation with only edge dislocations. Single crystal films with a specified set of slip systems are considered. The film-substrate system is subjected to a prescribed temperature history and a boundary value problem is formulated and solved for the evolution of the stress field and for the evolution of the dislocations structure in the film. A hard boundary layer forms at the interface between the film and the substrate, which does not scale with the film thickness and thus gives rise to a size effect. It is found that a reduction in the rate of dislocation nucleation can occur abruptly, which gives rise to a two-stage hardening behavior.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Martti Louhivuori; H. Jelger Risselada; Erik Van der Giessen; Siewert J. Marrink
Mechano-sensitive channels are ubiquitous membrane proteins that activate in response to increasing tension in the lipid membrane. They facilitate a sudden, nonselective release of solutes and water that safeguards the integrity of the cell in hypo- or hyper-osmotic shock conditions. We have simulated the rapid release of content from a pressurized liposome through a particular mechano-sensitive protein channel, MscL, embedded in the liposomal membrane. We show that a single channel is able to relax the liposome, stressed to the point of bursting, in a matter of microseconds. We map the full activation–deactivation cycle of MscL in near-atomic detail and are able to quantify the rapid decrease in liposomal stress as a result of channel activation. This provides a computational tool that opens the way to contribute to the rational design of functional nano-containers.
Biophysical Journal | 2008
Serge Yefimov; Erik Van der Giessen; Patrick Onck; Siewert J. Marrink
The tension-driven gating process of MscL from Mycobacterium tuberculosis, Tb-MscL, has been addressed at near-atomic detail using coarse-grained molecular dynamics simulations. To perform the simulations, a novel coarse-grained peptide model based on a thermodynamic parameterization of the amino-acid side chains has been applied. Both the wild-type Tb-MscL and its gain-of-function mutant V21D embedded in a solvated lipid bilayer have been studied. To mimic hypoosmotic shock conditions, simulations were performed at increasing levels of membrane tension approaching the rupture threshold of the lipid bilayer. Both the wild-type and the mutant channel are found to undergo significant conformational changes in accordance with an irislike expansion mechanism, reaching a conducting state on a microsecond timescale. The most pronounced expansion of the pore has been observed for the V21D mutant, which is consistent with the experimentally shown gain-of-function phenotype of the V21D mutant.
Journal of Chemical Physics | 2005
Monica Bulacu; Erik Van der Giessen
Extensive molecular-dynamics simulations have been performed to study the effect of chain conformational rigidity, controlled by bending and torsion potentials, on self-diffusion in polymer melts. The polymer model employs a novel torsion potential that avoids computational singularities without the need to impose rigid constraints on the bending angles. Two power laws are traditionally used to characterize the dependence of the self-diffusion coefficient on polymer length: D proportional to N(-nu) with nu=1 for NNe (reptation regime), Ne being the entanglement length. Our simulations, at constant temperature and density, up to N=250 reveal that, as the chain rigidity increases, the exponent nu gradually increases towards nu=2.0 for NNe. The value of Ne is slightly increased from 70 for flexible chains, up to the point where the crossover becomes undefined. This behavior is confirmed also by an analysis of the bead mean-square displacement. Subsequent investigations of the Rouse modes, dynamical structure factor, and chain trajectories indicate that the pre-reptation regime, for short stiff chains, is a modified Rouse regime rather than reptation.
Biophysical Journal | 2014
Ali Ghavami; Liesbeth M. Veenhoff; Erik Van der Giessen; Patrick Onck
The distribution of disordered proteins (FG-nups) that line the transport channel of the nuclear pore complex (NPC) is investigated by means of coarse-grained molecular dynamics simulations. A one-bead-per-amino-acid model is presented that accounts for the hydrophobic/hydrophilic and electrostatic interactions between different amino acids, polarity of the solvent, and screening of free ions. The results indicate that the interaction of the FG-nups forms a high-density, doughnut-like distribution inside the NPC, which is rich in FG-repeats. We show that the obtained distribution is encoded in the amino-acid sequence of the FG-nups and is driven by both electrostatic and hydrophobic interactions. To explore the relation between structure and function, we have systematically removed different combinations of FG-nups from the pore to simulate inviable and viable NPCs that were previously studied experimentally. The obtained density distributions show that the maximum density of the FG-nups inside the pore does not exceed 185 mg/mL in the inviable NPCs, whereas for the wild-type and viable NPCs, this value increases to 300 mg/mL. Interestingly, this maximum density is not correlated to the total mass of the FG-nups, but depends sensitively on the specific combination of essential Nups located in the central plane of the NPC.
International Journal of Plasticity | 2002
Sumit Basu; Erik Van der Giessen
Abstract The objective of this work is to study the stress and temperature fields ahead of a blunted notch under mode I, small-scale yielding situations. The investigation is motivated by the observation that certain polymers and polymer blends exhibit a marked increase in fracture toughness with increase in loading rate. To this end, the thermo-mechanics of glassy polymers within the framework of finite deformation elasto-viscoplasticity is discussed along with a finite element procedure to solve the resulting coupled equations. The results indicate that heat diffusion from the plastic zone leads to wider shear bands and larger heat-affected zones. Moreover, increase in loading rate has a noticeable effect on the rate of temperature rise, crack-tip opening displacement and the stress intensity factor at which crazing is expected to initiate in front of the crack tip.
International Journal of Damage Mechanics | 1995
A. Needleman; Viggo Tvergaard; Erik Van der Giessen
A boundary value problem for a periodic array of initially spherical voids in a power law creeping solid is analyzed. An axisymmetric cell model relevant for simulating grain boundary void growth is used. The rate boundary value problem is solved by means of a finite element method. Void growth histories accounting for void shape changes and, within the cell model context, void interaction effects are computed for various remote stress triaxiality states. An automatic remeshing algorithm permits computations for large changes in void size and shape. The computed void growth rates are compared with predictions from available analytical formulas that neglect shape change effects.
Biophysical Journal | 2015
Goran Žagar; Patrick Onck; Erik Van der Giessen
Biopolymer networks, such as those constituting the cytoskeleton of a cell or biological tissue, exhibit a nonlinear strain-stiffening behavior when subjected to large deformations. Interestingly, rheological experiments on various in vitro biopolymer networks have shown similar strain-stiffening trends regardless of the differences in their microstructure or constituents, suggesting a universal stiffening mechanism. In this article, we use computer simulations of a random network comprised of cross-linked biopolymer-like fibers to substantiate the notion that this universality lies in the existence of two fundamental stiffening mechanisms. After showing that the large strain response is accompanied by the development of a stress path, i.e., a percolating path of axially stressed fibers and cross-links, we demonstrate that the strain stiffening can be caused by two distinctly different mechanisms: 1) the pulling out of stress-path undulations; and 2) reorientation of the stress path. The former mechanism is bending-dominated and can be recognized by a power-law dependence with exponent 3/2 of the shear modulus on stress, whereas the latter mechanism is stretching-dominated and characterized by a power-law exponent 1/2. We demonstrate how material properties of the constituents, as well as the network microstructure, can affect the transition between the two stiffening mechanisms and, as such, control the dominant power-law scaling behavior.
PLOS ONE | 2016
Ali Ghavami; Erik Van der Giessen; Patrick Onck
Molecular transport across the nuclear envelope in eukaryotic cells is solely controlled by the nuclear pore complex (NPC). The NPC provides two types of nucleocytoplasmic transport: passive diffusion of small molecules and active chaperon-mediated translocation of large molecules. It has been shown that the interaction between intrinsically disordered proteins that line the central channel of the NPC and the transporting cargoes is the determining factor, but the exact mechanism of transport is yet unknown. Here, we use coarse-grained molecular dynamics simulations to quantify the energy barrier that has to be overcome for molecules to pass through the NPC. We focus on two aspects of transport. First, the passive transport of model cargo molecules with different sizes is studied and the size selectivity feature of the NPC is investigated. Our results show that the transport probability of cargoes is significantly reduced when they are larger than ∼5 nm in diameter. Secondly, we show that incorporating hydrophobic binding spots on the surface of the cargo effectively decreases the energy barrier of the pore. Finally, a simple transport model is proposed which characterizes the energy barrier of the NPC as a function of diameter and hydrophobicity of the transporting particles.
Nature Chemistry | 2017
Jiawen Chen; Franco King-Chi Leung; Marc C. A. Stuart; Takashi Kajitani; Takanori Fukushima; Erik Van der Giessen; Ben L. Feringa
A striking feature of living systems is their ability to produce motility by amplification of collective molecular motion from the nanoscale up to macroscopic dimensions. Some of natures protein motors, such as myosin in muscle tissue, consist of a hierarchical supramolecular assembly of very large proteins, in which mechanical stress induces a coordinated movement. However, artificial molecular muscles have often relied on covalent polymer-based actuators. Here, we describe the macroscopic contractile muscle-like motion of a supramolecular system (comprising 95% water) formed by the hierarchical self-assembly of a photoresponsive amphiphilic molecular motor. The molecular motor first assembles into nanofibres, which further assemble into aligned bundles that make up centimetre-long strings. Irradiation induces rotary motion of the molecular motors, and propagation and accumulation of this motion lead to contraction of the fibres towards the light source. This system supports large-amplitude motion, fast response, precise control over shape, as well as weight-lifting experiments in water and air.