Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erik van Meijgaard is active.

Publication


Featured researches published by Erik van Meijgaard.


Science | 2009

Partitioning recent Greenland mass loss

Michiel R. van den Broeke; Jonathan L. Bamber; J. Ettema; Eric Rignot; Ernst J. O. Schrama; Willem Jan van de Berg; Erik van Meijgaard; I. Velicogna; Bert Wouters

GRACE and Movement Together Recent measurements of the rate of mass loss from the Greenland ice sheet vary approximately by a factor of three. Resolving these discrepancies is essential for determining the current mass balance of the ice sheet and to project sea level rise in the future. Van den Broeke et al. (p. 984) obtained consistent estimates from two independent methods, one based on observations of ice movement combined with model calculations and the other on remote gravity measurements made by the GRACE (Gravity Recovery and Climate Experiment) satellites. The combination of these approaches also resolves the separate contributions of surface processes and of ice dynamics, the two major routes of ice mass loss. The major components of decay contributing to mass loss from the Greenland Ice Sheet can be quantified. Mass budget calculations, validated with satellite gravity observations [from the Gravity Recovery and Climate Experiment (GRACE) satellites], enable us to quantify the individual components of recent Greenland mass loss. The total 2000–2008 mass loss of ~1500 gigatons, equivalent to 0.46 millimeters per year of global sea level rise, is equally split between surface processes (runoff and precipitation) and ice dynamics. Without the moderating effects of increased snowfall and refreezing, post-1996 Greenland ice sheet mass losses would have been 100% higher. Since 2006, high summer melt rates have increased Greenland ice sheet mass loss to 273 gigatons per year (0.75 millimeters per year of equivalent sea level rise). The seasonal cycle in surface mass balance fully accounts for detrended GRACE mass variations, confirming insignificant subannual variation in ice sheet discharge.


Science | 2008

Elevation changes in antarctica mainly determined by accumulation variability

Michiel M. Helsen; Michiel R. van den Broeke; Roderik S. W. van de Wal; Willem Jan van de Berg; Erik van Meijgaard; Curt H. Davis; Yonghong Li; Ian D. Goodwin

Antarctic Ice Sheet elevation changes, which are used to estimate changes in the mass of the interior regions, are caused by variations in the depth of the firn layer. We quantified the effects of temperature and accumulation variability on firn layer thickness by simulating the 1980–2004 Antarctic firn depth variability. For most of Antarctica, the magnitudes of firn depth changes were comparable to those of observed ice sheet elevation changes. The current satellite observational period (∼15 years) is too short to neglect these fluctuations in firn depth when computing recent ice sheet mass changes. The amount of surface lowering in the Amundsen Sea Embayment revealed by satellite radar altimetry (1995–2003) was increased by including firn depth fluctuations, while a large area of the East Antarctic Ice Sheet slowly grew as a result of increased accumulation.


Boundary-Layer Meteorology | 1999

A GCSS Boundary-Layer Cloud Model Intercomparison Study Of The First Astex Lagrangian Experiment

Christopher S. Bretherton; Steven K. Krueger; Matthew C. Wyant; Peter Bechtold; Erik van Meijgaard; Bjorn Stevens; João Teixeira

Three single-column models (all with an explicit liquid water budget and compara-tively high vertical resolution) and three two-dimensional eddy-resolving models (including one with bin-resolved microphysics) are compared with observations from the first ASTEX Lagrangian experiment. This intercomparison was a part of the second GCSS boundary-layer cloud modelling workshop in August 1995.In the air column tracked during the first ASTEX Lagrangian experiment, a shallow subtropical drizzling stratocumulus-capped marine boundary layer deepens after two days into a cumulus capped boundary layer with patchy stratocumulus. The models are forced with time varying boundary conditions at the sea-surface and the capping inversion to simulate the changing environment of the air column.The models all predict the observed deepening and decoupling of the boundary layer quite well, with cumulus cloud evolution and thinning of the overlying stratocumulus. Thus these models all appear capable of predicting transitions between cloud and boundary-layer types with some skill. The models also produce realistic drizzle rates, but there are substantial quantitative differences in the cloud cover and liquid water path between models. The differences between the eddy-resolving model results are nearly as large as between the single column model results. The eddy resolving models give a more detailed picture of the boundary-layer evolution than the single-column models, but are still sensitive to the choice of microphysical and radiative parameterizations, sub-grid-scale turbulence models, and probably model resolution and dimensionality. One important example of the differences seen in these parameterizations is the absorption of solar radiation in a specified cloud layer, which varied by a factor of four between the model radiation parameterizations.


Journal of Geophysical Research | 2006

Identification of Antarctic ablation areas using a regional atmospheric climate model

Michiel R. van den Broeke; Willem Jan van de Berg; Erik van Meijgaard; C. H. Reijmer

The occurrence of Antarctic ablation areas in Dronning Maud Land, the Lambert Glacier Basin, Victoria Land, the Transantarctic Mountains and the Antarctic Peninsula is realistically predicted by the regional atmospheric climate model RACMO2/ANT, with snowdrift-related processes calculated offline. Antarctic ablation areas are characterized by a low solid precipitation flux in combination with strong sublimation, snowdrift erosion and/or melt. The strong interaction between atmospheric circulation and topography plays a decisive role in the precipitation distribution and hence that of ablation areas. Three types of Antarctic ablation areas can be distinguished, all occurring in dry regions: Type 1 is the erosion-driven ablation area, caused by 1-D and/or 2-D divergence in the katabatic wind field at high elevations (2000–3200 m asl). Type 2 is the sublimation-driven ablation area. This type occurs at lower elevations (


Climatic Change | 2007

Circulation statistics and climate change in Central Europe: PRUDENCE simulations and observations

Aad van Ulden; Geert Lenderink; Bart van den Hurk; Erik van Meijgaard

PRUDENCE simulations of the climate in Central Europe are analysed with respect to mean temperature, mean precipitation and three monthly mean geostrophic circulation indices. The three global models show important circulation biases in the control climate, in particular in the strength of the west-circulations in winter and summer. The nine regional models inherit much of the circulation biases from their host model, especially in winter. In summer, the regional models show a larger spread in circulation statistics, depending on nesting procedures and other model characteristics. Simulated circulation biases appear to have a significant inluence on simulated temperature and precipitation. The PRUDENCE ensemble appears to be biased towards warmer and wetter than observed circulations in winter, and towards warmer and dryer circulations in summer. A2-scenario simulations show important circulation changes, which have a significant impact on changes in the distributions of monthly mean temperature and precipitation. It is likely that interactions between land–surface processes and atmospheric circulation play an important role in the simulated changes in the summer climate in Central Europe.


Journal of Hydrometeorology | 2010

Diagnosing Land–Atmosphere Interaction from a Regional Climate Model Simulation over West Africa

Bart van den Hurk; Erik van Meijgaard

Abstract Land–atmosphere interaction at climatological time scales in a large area that includes the West African Sahel has been explicitly explored in a regional climate model (RegCM) simulation using a range of diagnostics. First, areas and seasons of strong land–atmosphere interaction were diagnosed from the requirement of a combined significant correlation between soil moisture, evaporation, and the recycling ratio. The northern edge of the West African monsoon area during June–August (JJA) and an area just north of the equator (Central African Republic) during March–May (MAM) were identified. Further analysis in these regions focused on the seasonal cycle of the lifting condensation level (LCL) and the convective triggering potential (CTP), and the sensitivity of CTP and near-surface dewpoint depressions HIlow to anomalous soil moisture. From these analyses, it is apparent that atmospheric mechanisms impose a strong constraint on the effect of soil moisture on the regional hydrological cycle.


Nature Communications | 2015

The impact of climate change on photovoltaic power generation in Europe

Sonia Jerez; Isabelle Tobin; Robert Vautard; Juan Pedro Montavez; José María López-Romero; Françoise Thais; Blanka Bartók; Ole Bøssing Christensen; Augustin Colette; Michel Déqué; Grigory Nikulin; Sven Kotlarski; Erik van Meijgaard; Claas Teichmann; Martin Wild

Ambitious climate change mitigation plans call for a significant increase in the use of renewables, which could, however, make the supply system more vulnerable to climate variability and changes. Here we evaluate climate change impacts on solar photovoltaic (PV) power in Europe using the recent EURO-CORDEX ensemble of high-resolution climate projections together with a PV power production model and assuming a well-developed European PV power fleet. Results indicate that the alteration of solar PV supply by the end of this century compared with the estimations made under current climate conditions should be in the range (−14%;+2%), with the largest decreases in Northern countries. Temporal stability of power generation does not appear as strongly affected in future climate scenarios either, even showing a slight positive trend in Southern countries. Therefore, despite small decreases in production expected in some parts of Europe, climate change is unlikely to threaten the European PV sector.


Antarctic Science | 2008

Firn depth correction along the Antarctic grounding line

Michiel R. van den Broeke; Willem Jan van de Berg; Erik van Meijgaard

Abstract To reduce the uncertainty in the calculation of Antarctic solid ice fluxes, the firn depth correction (Δh) in Antarctica is inferred from a steady-state firn densification model forced by a regional atmospheric climate model. The modelled density agrees well with observations from firn cores, apart from a site at the origin of fast flowing West Antarctic ice stream (Upstream B), where densification is anomalously rapid. The spatial distribution of Δh over Antarctica shows large variations, especially in the grounding line zone where large climate gradients exist. In places where the grounding line crosses ablation areas, Δh is zero. Along the remainder of the grounding line, Δh values range from typically 13 m in dry coastal areas (e.g. Dronning Maud Land) to 19 m in wet coastal areas (e.g. West Antarctica).


Environmental Research Letters | 2016

Climate change impacts on the power generation potential of a European mid-century wind farms scenario

Isabelle Tobin; Sonia Jerez; Robert Vautard; Françoise Thais; Erik van Meijgaard; Andreas F. Prein; Michel Déqué; Sven Kotlarski; Cathrine Fox Maule; Grigory Nikulin; Thomas Noël; Claas Teichmann

Wind energy resource is subject to changes in climate. To investigate the impacts of climate change on future European wind power generation potential, we analyze a multi-model ensemble of the most recent EURO-CORDEX regional climate simulations at the 12 km grid resolution. We developed a mid-century wind power plant scenario to focus the impact assessment on relevant locations for future wind power industry. We found that, under two greenhouse gas concentration scenarios, changes in the annual energy yield of the future European wind farms fleet as a whole will remain within ±5% across the 21st century. At country to local scales, wind farm yields will undergo changes up to 15% in magnitude, according to the large majority of models, but smaller than 5% in magnitude for most regions and models. The southern fleets such as the Iberian and Italian fleets are likely to be the most affected. With regard to variability, changes are essentially small or poorly significant from subdaily to interannual time scales.


Journal of Climate | 2002

Temperature Sensitivity of the Antarctic Surface Mass Balance in a Regional Atmospheric Climate Model

Nicole P. M. van Lipzig; Erik van Meijgaard; J. Oerlemans

Abstract The sensitivity of the surface mass balance of the Antarctic ice sheet to a change in temperature and a change in the sea ice extent is studied with a regional atmospheric climate model (RACMO) using a horizontal grid spacing of 55 km. The model is driven at its lateral boundaries by the reanalyses from the European Centre for Medium-Range Weather Forecasts. Sea ice extent and sea surface temperature are prescribed from observations. A control integration is performed for the 5-yr period 1980–84. In a 5-yr sensitivity run, the model is forced by a 2-K increase in temperature at the sea surface and at the lateral boundaries of the model domain, and a reduction in the sea ice extent. The relative humidity at the lateral boundaries is kept constant. The calculated surface mass balance of the grounded Antarctic ice is found to increase by 30% due to the 2-K warming and the retreat of the sea ice. This value is two to three times as large as previous estimates, which were based on simplified atmospher...

Collaboration


Dive into the Erik van Meijgaard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Grigory Nikulin

Swedish Meteorological and Hydrological Institute

View shared research outputs
Top Co-Authors

Avatar

Augustin Colette

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Vautard

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jan T. M. Lenaerts

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge