Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erik Vassella is active.

Publication


Featured researches published by Erik Vassella.


Cancer Research | 2009

miR-15a and miR-16 Are Implicated in Cell Cycle Regulation in a Rb-Dependent Manner and Are Frequently Deleted or Down-regulated in Non–Small Cell Lung Cancer

Nora Bandi; Samuel Zbinden; Mathias Gugger; Marlene Arnold; Verena Kocher; Lara Hasan; Andreas Kappeler; Thomas Brunner; Erik Vassella

MicroRNAs (miRNA) are negative regulators of gene expression at the posttranscriptional level, which are involved in tumorigenesis. Two miRNAs, miR-15a and miR-16, which are located at chromosome 13q14, have been implicated in cell cycle control and apoptosis, but little information is available about their role in solid tumors. To address this question, we established a protocol to quantify miRNAs from laser capture microdissected tissues. Here, we show that miR-15a/miR-16 are frequently deleted or down-regulated in squamous cell carcinomas and adenocarcinomas of the lung. In these tumors, expression of miR-15a/miR-16 inversely correlates with the expression of cyclin D1. In non-small cell lung cancer (NSCLC) cell lines, cyclins D1, D2, and E1 are directly regulated by physiologic concentrations of miR-15a/miR-16. Consistent with these results, overexpression of these miRNAs induces cell cycle arrest in G(1)-G(0). Interestingly, H2009 cells lacking Rb are resistant to miR-15a/miR-16-induced cell cycle arrest, whereas reintroduction of functional Rb resensitizes these cells to miRNA activity. In contrast, down-regulation of Rb in A549 cells by RNA interference confers resistance to these miRNAs. Thus, cell cycle arrest induced by these miRNAs depends on the expression of Rb, confirming that G(1) cyclins are major targets of miR-15a/miR-16 in NSCLC. Our results indicate that miR-15a/miR-16 are implicated in cell cycle control and likely contribute to the tumorigenesis of NSCLC.


Molecular Cancer | 2011

miR-34a and miR-15a/16 are co-regulated in non-small cell lung cancer and control cell cycle progression in a synergistic and Rb-dependent manner

Nora Bandi; Erik Vassella

BackgroundmicroRNAs (miRNAs) are small non-coding RNAs that are frequently involved in carcinogenesis. Although many miRNAs form part of integrated networks, little information is available how they interact with each other to control cellular processes. miR-34a and miR-15a/16 are functionally related; they share common targets and control similar processes including G1-S cell cycle progression and apoptosis. The aim of this study was to investigate the combined action of miR-34a and miR-15a/16 in non-small cell lung cancer (NSCLC) cells.MethodsNSCLC cells were transfected with miR-34a and miR-15a/16 mimics and analysed for cell cycle arrest and apoptosis by flow cytometry. Expression of retinoblastoma and cyclin E1 was manipulated to investigate the role of these proteins in miRNA-induced cell cycle arrest. Expression of miRNA targets was assessed by real-time PCR. To investigate if both miRNAs are co-regulated in NSCLC cells, tumour tissue and matched normal lung tissue from 23 patients were collected by laser capture microdissection and compared for the expression of these miRNAs by real-time PCR.ResultsIn the present study, we demonstrate that miR-34a and miR-15a/16 act synergistically to induce cell cycle arrest in a Rb-dependent manner. In contrast, no synergistic effect of these miRNAs was observed for apoptosis. The synergistic action on cell cycle arrest was not due to a more efficient down-regulation of targets common to both miRNAs. However, the synergistic effect was abrogated in cells in which cyclin E1, a target unique to miR-15a/16, was silenced by RNA interference. Thus, the synergistic effect was due to the fact that in concerted action both miRNAs are able to down-regulate more targets involved in cell cycle control than each miRNA alone. Both miRNAs were significantly co-regulated in adenocarcinomas of the lung suggesting a functional link between these miRNAs.ConclusionsIn concerted action miRNAs are able to potentiate their impact on G1-S progression. Thus the combination of miRNAs of the same network rather than individual miRNAs should be considered for assessing a biological response. Since miR-34a and miR-15a/16 are frequently down-regulated in the same tumour tissue, administrating a combination of both miRNAs may also potentiate their therapeutic impact.


Neuro-oncology | 2013

IDH/MGMT-driven molecular classification of low-grade glioma is a strong predictor for long-term survival

Severina Leu; Stefanie von Felten; Stephan Frank; Erik Vassella; Istvan Vajtai; Elisabeth Taylor; Marianne Schulz; Gregor Hutter; Jürgen Hench; Philippe Schucht; Jean-Louis Boulay; Luigi Mariani

BACKGROUND Low-grade gliomas (LGGs) are rare brain neoplasms, with survival spanning up to a few decades. Thus, accurate evaluations on how biomarkers impact survival among patients with LGG require long-term studies on samples prospectively collected over a long period. METHODS The 210 adult LGGs collected in our databank were screened for IDH1 and IDH2 mutations (IDHmut), MGMT gene promoter methylation (MGMTmet), 1p/19q loss of heterozygosity (1p19qloh), and nuclear TP53 immunopositivity (TP53pos). Multivariate survival analyses with multiple imputation of missing data were performed using either histopathology or molecular markers. Both models were compared using Akaikes information criterion (AIC). The molecular model was reduced by stepwise model selection to filter out the most critical predictors. A third model was generated to assess for various marker combinations. RESULTS Molecular parameters were better survival predictors than histology (ΔAIC = 12.5, P< .001). Forty-five percent of studied patients died. MGMTmet was positively associated with IDHmut (P< .001). In the molecular model with marker combinations, IDHmut/MGMTmet combined status had a favorable impact on overall survival, compared with IDHwt (hazard ratio [HR] = 0.33, P< .01), and even more so the triple combination, IDHmut/MGMTmet/1p19qloh (HR = 0.18, P< .001). Furthermore, IDHmut/MGMTmet/TP53pos triple combination was a significant risk factor for malignant transformation (HR = 2.75, P< .05). CONCLUSION By integrating networks of activated molecular glioma pathways, the model based on genotype better predicts prognosis than histology and, therefore, provides a more reliable tool for standardizing future treatment strategies.


Methods of Molecular Biology | 2004

Transformation of Monomorphic and Pleomorphic Trypanosoma brucei

Richard McCulloch; Erik Vassella; Peter Burton; Michael Boshart; J. David Barry

African trypanosomes, such as Trypanosoma brucei, are protozoan parasites of mammals that were first described over 100 hundred years ago. They have long been the subjects of biological investigation, which has yielded insights into a number of fundamental, as well as novel, cellular processes in all organisms. In the last decade or so, genetic manipulation of trypanosomes has become possible through DNA transformation, allowing yet more detailed analysis of the biology of the parasite. One facet of this is that DNA transformation has itself been used as an assay for recombination and will undoubtedly lead to further genetic approaches to examine this process. Here we describe protocols for DNA transformation of Trypanosoma brucei, including two different life cycle stages and two different strain types that are distinguished by morphological and developmental criteria. We consider the application of transformation to recombination, as well as the uses of transforming the different life cycle stages and strain types.


Journal of Clinical Oncology | 2006

Loss of Heterozygosity 1p36 and 19q13 Is a Prognostic Factor for Overall Survival in Patients With Diffuse WHO Grade 2 Gliomas Treated Without Chemotherapy

Luigi Mariani; Gianluca Deiana; Erik Vassella; Ali-Reza Fathi; Christine Murtin; Marlene Arnold; Istvan Vajtai; Joachim Weis; Peter Siegenthaler; Martina Schobesberger; Michael Reinert

PURPOSE This study was conducted to elucidate the impact of loss of heterozygosity (LOH) for chromosomes 1p36 and 19q13 on the overall survival of patients with diffusely infiltrating WHO grade 2 gliomas treated without chemotherapy. PATIENTS AND METHODS We assessed the LOH status of tumors from patients harboring WHO grade 2 gliomas diagnosed between 1991 and 2000. Patients were either followed after initial biopsy or treated by surgery and/or radiation therapy (RT). Overall survival, time to malignant transformation, and progression-free survival were last updated as of March 2005. RESULTS Of a total of 79 patients, LOH 1p36 and LOH 19q13 could be assessed in 67 and 66 patients, respectively. The median follow-up after diagnosis was 6 years. Loss of either 1p or 19q, in particular codeletion(s) at both loci, was found to positively impact on both overall survival (log-rank P < .01), progression-free survival, and survival without malignant transformation (P < .05). Tumor volume (P < .0001), neurologic deficits at diagnosis (P < .01), involvement of more than one lobe (P < .01), and absence of an oligodendroglial component (P < .05) were also predictors of shorter overall survival. The extent of surgery was similar in patients with or without LOH 1p and/or 19q; RT was more frequently resorted to for patients without than for patients with LOH 1p/19q (30% v 60%). CONCLUSION The presence of LOH on either 1p36 or 19q13, and in particular codeletion of both loci is a strong, nontreatment-related, prognostic factor for overall survival in patients with diffusely infiltrating WHO grade 2 gliomas.


Eukaryotic Cell | 2006

A Mitogen-activated protein kinase controls differentiation of bloodstream forms of Trypanosoma brucei.

Debora Domenicali Pfister; Gabriela Schumann Burkard; Sabine Morand; Christina Kunz Renggli; Isabel Roditi; Erik Vassella

ABSTRACT African trypanosomes undergo differentiation in order to adapt to the mammalian host and the tsetse fly vector. To characterize the role of a mitogen-activated protein (MAP) kinase homologue, TbMAPK5, in the differentiation of Trypanosoma brucei, we constructed a knockout in procyclic (insect) forms from a differentiation-competent (pleomorphic) stock. Two independent knockout clones proliferated normally in culture and were not essential for other life cycle stages in the fly. They were also able to infect immunosuppressed mice, but the peak parasitemia was 16-fold lower than that of the wild type. Differentiation of the proliferating long slender to the nonproliferating short stumpy bloodstream form is triggered by an autocrine factor, stumpy induction factor (SIF). The knockout differentiated prematurely in mice and in culture, suggestive of increased sensitivity to SIF. In contrast, a null mutant of a cell line refractory to SIF was able to proliferate normally. The differentiation phenotype was partially rescued by complementation with wild-type TbMAPK5 but exacerbated by introduction of a nonactivatable mutant form. Our results indicate a regulatory function for TbMAPK5 in the differentiation of bloodstream forms of T. brucei that might be exploitable as a target for chemotherapy against human sleeping sickness.


PLOS Pathogens | 2005

Expression of Procyclin mRNAs during Cyclical Transmission of Trypanosoma brucei

Simon Urwyler; Erik Vassella; Jan Van Den Abbeele; Christina Kunz Renggli; Pat Blundell; J. David Barry; Isabel Roditi

Trypanosoma brucei, the parasite causing human sleeping sickness, relies on the tsetse fly for its transmission. In the insect, EP and GPEET procyclins are the major surface glycoproteins of procyclic (midgut) forms of the parasite, with GPEET predominating in the early procyclic form and two isoforms of EP in the late procyclic form. EP procyclins were previously detected on salivary gland trypanosomes, presumably epimastigotes, by immunoelectron microscopy. However, no procyclins could be detected by mass spectrometry when parasites were isolated from infected glands. We have used qualitative and quantitative RT-PCR to analyse the procyclin mRNAs expressed by trypanosomes in the tsetse midgut and salivary glands at different time points after infection. The coding regions of the three EP isoforms (EP1, EP2 and EP3) are extremely similar, but their 3′ untranslated regions contain unique sequences that make it possible to assign the cDNAs amplified by this technique. With the exception of EP2, we found that the spectrum of procyclin mRNAs expressed in the midgut mirrors the protein repertoire of early and established procyclic forms. Surprisingly, procyclin mRNAs, including that of GPEET, are present at relatively high levels in salivary gland trypanosomes, although the proteins are rarely detected by immunofluorescence. Additional experiments using transgenic trypanosomes expressing reporter genes or mutant forms of procyclin point to a mechanism of translational or post-translational control, involving the procyclin coding regions, in salivary gland trypanosomes. It is widely accepted that T. brucei always has a coat of either variant surface glycoprotein or procyclin. It has been known for many years that the epimastigote form does not have a variant surface glycoprotein coat. The finding that this life cycle stage is usually negative for procyclin as well is new, and means that the paradigm will need to be revised.


Molecular and Biochemical Parasitology | 1999

The use of transgenic Trypanosoma brucei to identify compounds inducing the differentiation of bloodstream forms to procyclic forms

Sandro Sbicego; Erik Vassella; Ursula Kurath; Beat Blum; Isabel Roditi

The expression of procyclins is the earliest known marker of differentiation of bloodstream forms of Trypanosoma brucei to procyclic forms. We have generated transgenic bloodstream and procyclic forms in which the coding region of one procyclin gene was replaced by E. coli beta-glucuronidase (GUS). GUS activity can be monitored in a simple one-step colour reaction in microtitre plates; this assay is potentially suitable for large-scale screening for compounds that influence differentiation. GUS was stage-specifically expressed in procyclic forms and its synthesis occurred in parallel with that of procyclin when bloodstream forms were triggered to differentiate by the addition of cis-aconitate. GUS could also be induced by brief treatment with the proteases trypsin, pronase or thermolysin, but not with pepsin or thrombin. Interestingly, a combination of one of the active proteases with cis-aconitate resulted in increased GUS activity relative to either trigger alone. In contrast to cis-aconitate, protease treatment resulted in considerable cell death. Experiments with the pleomorphic strain AnTat 1.1 showed that long slender bloodstream forms were rapidly killed by proteases, whereas stumpy forms were largely resistant. Stumpy forms treated with trypsin differentiated synchronously and expressed procyclin with faster kinetics than when they were triggered by cis-aconitate. As predicted by the GUS assay, differentiation was even more rapid when both inducers were used simultaneously, with all cells expressing maximal levels of procyclin within 3 h.


Neuroendocrinology | 2014

Prognostic and Predictive Roles of MGMT Protein Expression and Promoter Methylation in Sporadic Pancreatic Neuroendocrine Neoplasms

Anja Schmitt; Marianne Pavel; Thomas Rudolph; Heather Dawson; Annika Blank; Paul Komminoth; Erik Vassella; Aurel Perren

Background/Aims: O6-methylguanine-methyltransferase (MGMT) is an important enzyme of DNA repair. MGMT promoter methylation is detectable in a subset of pancreatic neuroendocrine neoplasms (pNEN). A subset of pNEN responds to the alkylating agent temozolomide (TMZ). We wanted to correlate MGMT promoter methylation with MGMT protein loss in pNEN, correlate the findings with clinico-pathological data and determine the role of MGMT to predict response to TMZ chemotherapy. Methods: We analysed a well-characterized collective of 141 resected pNEN with median follow-up of 83 months for MGMT protein expression and promoter methylation using methylation-specific PCR (MSP). A second collective of 10 metastasized, pretreated and progressive patients receiving TMZ was used to examine the predictive role of MGMT by determining protein expression and promoter methylation using primer extension-based quantitative PCR. Results: In both collectives there was no correlation between MGMT protein expression and promoter methylation. Loss of MGMT protein was associated with an adverse outcome, this prognostic value, however, was not independent from grade and stage in multivariate analysis. Promoter hypermethylation was significantly associated with response to TMZ. Conclusion: Loss of MGMT protein expression is associated with adverse outcome in a surgical series of pNET. MGMT promoter methylation could be a predictive marker for TMZ chemotherapy in pNEN, but further, favourably prospective studies will be needed to confirm this result and before this observation can influence clinical routine.


PLOS ONE | 2009

Major Surface Glycoproteins of Insect Forms of Trypanosoma brucei Are Not Essential for Cyclical Transmission by Tsetse

Erik Vassella; Michael Oberle; Simon Urwyler; Christina Kunz Renggli; Erwin Studer; Andrew Hemphill; Cristina Fragoso; Peter Bütikofer; Reto Brun; Isabel Roditi

Procyclic forms of Trypanosoma brucei reside in the midgut of tsetse flies where they are covered by several million copies of glycosylphosphatidylinositol-anchored proteins known as procyclins. It has been proposed that procyclins protect parasites against proteases and/or participate in tropism, directing them from the midgut to the salivary glands. There are four different procyclin genes, each subject to elaborate levels of regulation. To determine if procyclins are essential for survival and transmission of T. brucei, all four genes were deleted and parasite fitness was compared in vitro and in vivo. When co-cultured in vitro, the null mutant and wild type trypanosomes (tagged with cyan fluorescent protein) maintained a near-constant equilibrium. In contrast, when flies were infected with the same mixture, the null mutant was rapidly overgrown in the midgut, reflecting a reduction in fitness in vivo. Although the null mutant is patently defective in competition with procyclin-positive parasites, on its own it can complete the life cycle and generate infectious metacyclic forms. The procyclic form of T. brucei thus differs strikingly from the bloodstream form, which does not tolerate any perturbation of its variant surface glycoprotein coat, and from other parasites such as Plasmodium berghei, which requires the circumsporozoite protein for successful transmission to a new host.

Collaboration


Dive into the Erik Vassella's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luigi Mariani

University Hospital of Basel

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christina Kunz Renggli

Swiss Tropical and Public Health Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge