Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erik W. Dent is active.

Publication


Featured researches published by Erik W. Dent.


Neuron | 2003

Cytoskeletal dynamics and transport in growth cone motility and axon guidance

Erik W. Dent; Frank B. Gertler

Recent studies indicate the actin and microtubule cytoskeletons are a final common target of many signaling cascades that influence the developing neuron. Regulation of polymer dynamics and transport are crucial for the proper growth cone motility. This review addresses how actin filaments, microtubules, and their associated proteins play crucial roles in growth cone motility, axon outgrowth, and guidance. We present a working model for cytoskeletal regulation of directed axon outgrowth. An important goal for the future will be to understand the coordinated response of the cytoskeleton to signaling cascades induced by guidance receptor activation.


Nature Cell Biology | 2007

Filopodia are required for cortical neurite initiation

Erik W. Dent; Adam V. Kwiatkowski; Leslie Marie Mebane; Ulrike Philippar; Melanie Barzik; Douglas A. Rubinson; Stephanie Gupton; J. Edward van Veen; Craig Furman; Jiangyang Zhang; Arthur S. Alberts; Susumu Mori; Frank B. Gertler

Extension of neurites from a cell body is essential to form a functional nervous system; however, the mechanisms underlying neuritogenesis are poorly understood. Ena/VASP proteins regulate actin dynamics and modulate elaboration of cellular protrusions. We recently reported that cortical axon-tract formation is lost in Ena/VASP-null mice and Ena/VASP-null cortical neurons lack filopodia and fail to elaborate neurites. Here, we report that neuritogenesis in Ena/VASP-null neurons can be rescued by restoring filopodia formation through ectopic expression of the actin nucleating protein mDia2. Conversely, wild-type neurons in which filopodia formation is blocked fail to elaborate neurites. We also report that laminin, which promotes the formation of filopodia-like actin-rich protrusions, rescues neuritogenesis in Ena/VASP-deficient neurons. Therefore, filopodia formation is a key prerequisite for neuritogenesis in cortical neurons. Neurite initiation also requires microtubule extension into filopodia, suggesting that interactions between actin-filament bundles and dynamic microtubules within filopodia are crucial for neuritogenesis.


The Journal of Neuroscience | 2004

Netrin-1 and Semaphorin 3A Promote or Inhibit Cortical Axon Branching, Respectively, by Reorganization of the Cytoskeleton

Erik W. Dent; Aileen M. Barnes; Fangjun Tang; Katherine Kalil

In many CNS pathways, target innervation occurs by axon branching rather than extension of the primary growth cone into targets. To investigate mechanisms of branch formation, we studied the effects of attractive and inhibitory guidance cues on cortical axon branching. We found that netrin-1, which attracts cortical axons, and FGF-2 increased branching by >50%, whereas semaphorin 3A (Sema3A), which repels cortical axons, inhibited branching by 50%. Importantly, none of the factors affected axon length significantly. The increase in branching by FGF-2 and the inhibition of branching by Sema3A were mediated by opposing effects on the growth cone (expansion vs collapse) and on the cytoskeleton. FGF-2 increased actin polymerization and formation of microtubule loops in growth cones over many hours, whereas Sema3A depolymerized actin filaments, attenuated microtubule dynamics, and collapsed microtubule arrays within minutes. Netrin-1 promoted rapid axon branching, often without involving the growth cone. Branches formed de novo on the axon shaft within 30 min after local application of netrin-1, which induced rapid accumulation of actin filaments in filopodia. Importantly, increased actin polymerization and microtubule dynamics were necessary for axon branching to occur. Taken together, these results show that guidance factors influence the organization and dynamics of the cytoskeleton at the growth cone and the axon shaft to promote or inhibit axon branching. Independent of axon outgrowth, axon branching in response to guidance cues can occur over different time courses by different cellular mechanisms.


Current Opinion in Neurobiology | 2005

Touch and go: guidance cues signal to the growth cone cytoskeleton

Katherine Kalil; Erik W. Dent

Growth cones, the highly motile tips of growing axons, guide axons to their targets by responding to molecular cues. Growth cone behaviors such as advancing, retracting, turning and branching are driven by the dynamics and reorganization of the actin and microtubule cytoskeleton through signaling pathways linked to guidance cue receptors. Actin filaments play a major part in growth cone motility, and because of their peripheral locations were thought to be the primary target of molecular cues. However, recent studies have shown that dynamic microtubules can penetrate the growth cone periphery where guidance molecules can influence them directly. Moreover, guidance cues can regulate growth cone steering by modulating dynamic actin-microtubule interactions.


The Journal of Neuroscience | 2008

Activity-Dependent Dynamic Microtubule Invasion of Dendritic Spines

Xindao Hu; Chris Viesselmann; Sookin Nam; Elliott B. Merriam; Erik W. Dent

Dendritic spines are the primary sites of contact with presynaptic axons on excitatory hippocampal and cortical neurons. During development and plasticity spines undergo marked changes in structure that directly affect the functional communication between neurons. Elucidating the cytoskeletal events that induce these structural changes is fundamental to understanding synaptic biology. Actin plays a central role in the spine cytoskeleton, however the role of microtubules in spine function has been studied little. Although microtubules have a prominent role in transporting material throughout the dendrite that is destined for spines, they are not thought to directly influence spine structure or function. Using total internal reflectance fluorescent microscopy we discovered that microtubules rapidly invade dendritic protrusions of mature CNS neurons (up to 63 d in vitro), occasionally being associated with marked changes in spine morphology in the form of transient spine head protrusions (tSHPs). Two microtubules can occupy a spine simultaneously and microtubule targeting can occur from both the proximal and distal dendrite. A small percentage of spines are targeted at a time and all targeting events are transient, averaging only a few minutes. Nevertheless, over time many spines on a dendrite are targeted by microtubules. Importantly, we show that increasing neuronal activity enhances both the number of spines invaded by microtubules and the duration of these invasions. This study provides new insight into the dynamics of the neuronal cytoskeleton in mature CNS neurons and suggests that microtubules play an important, direct role in spine morphology and function.


Journal of Neurobiology | 2000

Common Mechanisms Underlying Growth Cone Guidance and Axon Branching

Katherine Kalil; Györgyi Szebenyi; Erik W. Dent

During development, growth cones direct growing axons into appropriate targets. However, in some cortical pathways target innervation occurs through the development of collateral branches that extend interstitially from the axon shaft. How do such branches form? Direct observations of living cortical brain slices revealed that growth cones of callosal axons pause for many hours beneath their cortical targets prior to the development of interstitial branches. High resolution imaging of dissociated living cortical neurons for many hours revealed that the growth cone demarcates sites of future axon branching by lengthy pausing behaviors and enlargement of the growth cone. After a new growth cone forms and resumes forward advance, filopodial and lamellipodial remnants of the large paused growth cone are left behind on the axon shaft from which interstitial branches later emerge. To investigate how the cytoskeleton reorganizes at axon branch points, we fluorescently labeled microtubules in living cortical neurons and imaged the behaviors of microtubules during new growth from the axon shaft and the growth cone. In both regions microtubules reorganize into a more plastic form by splaying apart and fragmenting. These shorter microtubules then invade newly developing branches with anterograde and retrograde movements. Although axon branching of dissociated cortical neurons occurs in the absence of targets, application of a target-derived growth factor, FGF-2, greatly enhances branching. Taken together, these results demonstrate that growth cone pausing is closely related to axon branching and suggest that common mechanisms underlie directed axon growth from the terminal growth cone and the axon shaft.


The Neuroscientist | 2003

Axon Guidance by Growth Cones and Branches: Common Cytoskeletal and Signaling Mechanisms:

Erik W. Dent; Fangjun Tang; Katherine Kalil

Growing axons are guided to appropriate targets by responses of their motile growth cones to environmental cues. Interstitial axon branching is also an important form of axon guidance in the mammalian CNS. Visualization of growing axons in cortical slices and in dissociated cortical cultures showed that growth cone pausing behaviors demarcate sites of future axon branching. Studies of vertebrate and invertebrate growth cones suggest common mechanisms that regulate growth cone behaviors and axon branching. These include reorganization of the actin and microtubule cytoskeleton, dynamic interactions between microtubules and actin filaments, effects of axon guidance molecules, actions of actin regulatory proteins, and dynamic changes in intracellular calcium signaling. Future challenges will be to extend high-resolution imaging of single neurons to studies of intracellular events in the intact nervous system and to apply knowledge of developmental mechanisms to the promotion of axon sprouting after injury in the adult CNS.


Nature Reviews Neuroscience | 2014

Branch management: mechanisms of axon branching in the developing vertebrate CNS

Katherine Kalil; Erik W. Dent

The remarkable ability of a single axon to extend multiple branches and form terminal arbors enables vertebrate neurons to integrate information from divergent regions of the nervous system. Axons select appropriate pathways during development, but it is the branches that extend interstitially from the axon shaft and arborize at specific targets that are responsible for virtually all of the synaptic connectivity in the vertebrate CNS. How do axons form branches at specific target regions? Recent studies have identified molecular cues that activate intracellular signalling pathways in axons and mediate dynamic reorganization of the cytoskeleton to promote the formation of axon branches.


The Journal of Neuroscience | 2013

Synaptic Regulation of Microtubule Dynamics in Dendritic Spines by Calcium, F-Actin, and Drebrin

Elliott B. Merriam; Matthew Millette; Derek C. Lumbard; Witchuda Saengsawang; Thomas Fothergill; Xindao Hu; Lotfi Ferhat; Erik W. Dent

Dendritic spines are actin-rich compartments that protrude from the microtubule-rich dendritic shafts of principal neurons. Spines contain receptors and postsynaptic machinery for receiving the majority of glutamatergic inputs. Recent studies have shown that microtubules polymerize from dendritic shafts into spines and that signaling through synaptic NMDA receptors regulates this process. However, the mechanisms regulating microtubule dynamics in dendrites and spines remain unclear. Here we show that in hippocampal neurons from male and female mice, the majority of microtubules enter spines from highly localized sites at the base of spines. These entries occur in response to synapse-specific calcium transients that promote microtubule entry into active spines. We further document that spine calcium transients promote local actin polymerization, and that F-actin is both necessary and sufficient for microtubule entry. Finally, we show that drebrin, a protein known to mediate interactions between F-actin and microtubules, acts as a positive regulator of microtubule entry into spines. Together these results establish for the first time the essential mechanisms regulating microtubule entry into spines and contribute importantly to our understanding of the role of microtubules in synaptic function and plasticity.


Current Opinion in Neurobiology | 2011

The dynamic cytoskeleton: backbone of dendritic spine plasticity

Erik W. Dent; Elliott B. Merriam; Xindao Hu

Dendritic spines are small actin-rich protrusions on the surface of dendrites whose morphological and molecular plasticity play key roles in learning and memory. Both the form and function of spines are critically dependent on the actin cytoskeleton. However, new research, using electron microscopy and live-cell super-resolution microscopy indicates that the actin cytoskeleton is more complex and dynamic than originally thought. Also, exciting recent studies from several labs indicate that microtubules, once thought to be restricted to the dendrite shaft, can make excursions into the most distal regions of dendritic spines. Moreover, microtubule invasions of spines appear to be associated with changes in synaptic activity. Thus, it is likely that dynamic interactions between microtubules and actin filaments within dendritic spines play important roles in dendritic spine plasticity.

Collaboration


Dive into the Erik W. Dent's collaboration.

Top Co-Authors

Avatar

Katherine Kalil

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Justin C. Williams

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jason Ballweg

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Chris Viesselmann

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Derek C. Lumbard

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Yu Huang

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Frank B. Gertler

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. A. Eriksson

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

S. N. Coppersmith

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge