Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erik W. Thompson is active.

Publication


Featured researches published by Erik W. Thompson.


Journal of Cell Biology | 2006

The epithelial–mesenchymal transition: new insights in signaling, development, and disease

Jonathan M. Lee; Shoukat Dedhar; Raghu Kalluri; Erik W. Thompson

The conversion of an epithelial cell to a mesenchymal cell is critical to metazoan embryogenesis and a defining structural feature of organ development. Current interest in this process, which is described as an epithelial–mesenchymal transition (EMT), stems from its developmental importance and its involvement in several adult pathologies. Interest and research in EMT are currently at a high level, as seen by the attendance at the recent EMT meeting in Vancouver, Canada (October 1–3, 2005). The meeting, which was hosted by The EMT International Association, was the second international EMT meeting, the first being held in Port Douglas, Queensland, Australia in October 2003. The EMT International Association was formed in 2002 to provide an international body for those interested in EMT and the reverse process, mesenchymal–epithelial transition, and, most importantly, to bring together those working on EMT in development, cancer, fibrosis, and pathology. These themes continued during the recent meeting in Vancouver. Discussion at the Vancouver meeting spanned several areas of research, including signaling pathway activation of EMT and the transcription factors and gene targets involved. Also covered in detail was the basic cell biology of EMT and its role in cancer and fibrosis, as well as the identification of new markers to facilitate the observation of EMT in vivo. This is particularly important because the potential contribution of EMT during neoplasia is the subject of vigorous scientific debate (Tarin, D., E.W. Thompson, and D.F. Newgreen. 2005. Cancer Res. 65:5996–6000; Thompson, E.W., D.F. Newgreen, and D. Tarin. 2005. Cancer Res. 65:5991–5995).


Journal of Cellular Physiology | 2007

Epithelial-mesenchymal and mesenchymal : Epithelial transitions in carcinoma progression

Honor J. Hugo; M. Leigh Ackland; Tony Blick; Mitchell G. Lawrence; Judith A. Clements; Elizabeth D. Williams; Erik W. Thompson

Like a set of bookends, cellular, molecular, and genetic changes of the beginnings of life mirror those of one of the most common cause of death—metastatic cancer. Epithelial to mesenchymal transition (EMT) is an important change in cell phenotype which allows the escape of epithelial cells from the structural constraints imposed by tissue architecture, and was first recognized by Elizabeth Hay in the early to mid 1980s to be a central process in early embryonic morphogenesis. Reversals of these changes, termed mesenchymal to epithelial transitions (METs), also occur and are important in tissue construction in normal development. Over the last decade, evidence has mounted for EMT as the means through which solid tissue epithelial cancers invade and metastasize. However, demonstrating this potentially rapid and transient process in vivo has proven difficult and data connecting the relevance of this process to tumor progression is still somewhat limited and controversial. Evidence for an important role of MET in the development of clinically overt metastases is starting to accumulate, and model systems have been developed. This review details recent advances in the knowledge of EMT as it occurs in breast development and carcinoma and prostate cancer progression, and highlights the role that MET plays in cancer metastasis. Finally, perspectives from a clinical and translational viewpoint are discussed. J. Cell. Physiol. 213: 374–383, 2007.


Cancer Research | 2005

Carcinoma Invasion and Metastasis: A Role for Epithelial-Mesenchymal Transition?

Erik W. Thompson; Donald F. Newgreen

Carcinogenesis involves the accretion of unprogrammed genetic and epigenetic changes, which lead to dysregulation of the normal control of cell number. But a key clinical turning point in carcinoma progression is the establishment by emigrant cells of secondary growth sites (i.e., metastasis). The metastatic “cascade” comprises numerous steps, including escape from the primary tumor site, penetration of local stroma, entry of local vascular or lymphatic vessels (intravasation), aggregation with platelets, interaction with and adhesion to distant endothelia, extravasation, recolonization, and expansion ( 1), all the time avoiding effective immune clearance and being able to survive in these multiple contexts...


Cancer Research | 2005

The fallacy of epithelial mesenchymal transition in neoplasia

David Tarin; Erik W. Thompson; Donald F. Newgreen

Epithelial mesenchymal transition has been postulated as a versatile mechanism which facilitates cellular repositioning and redeployment during embryonic development, tissue reconstruction after injury, carcinogenesis, and tumor metastasis. The hypothesis originates from parallels drawn between the morphology and behavior of locomotory and sedentary cells in vitro and in various normal and pathologic processes in vivo. This review analyzes data from several studies on embryonic development, wound healing, and the pathology of human tumors, including work from our own laboratory, to assess the validity of the proposal. It is concluded that there is no convincing evidence for conversion of epithelial cells into mesenchymal cell lineages in vivo and that the biological repertoire of normal and malignant cells is sufficient to account for the events and processes observed, without needing to invoke radical changes in cell identity.


Cancer Research | 2006

Mesenchymal-to-Epithelial Transition Facilitates Bladder Cancer Metastasis: Role of Fibroblast Growth Factor Receptor-2

Christine L. Chaffer; Janelle P. Brennan; John Slavin; Tony Blick; Erik W. Thompson; Elizabeth D. Williams

Epithelial-to-mesenchymal transition (EMT) increases cell migration and invasion, and facilitates metastasis in multiple carcinoma types, but belies epithelial similarities between primary and secondary tumors. This study addresses the importance of mesenchymal-to-epithelial transition (MET) in the formation of clinically significant metastasis. The previously described bladder carcinoma TSU-Pr1 (T24) progression series of cell lines selected in vivo for increasing metastatic ability following systemic seeding was used in this study. It was found that the more metastatic sublines had acquired epithelial characteristics. Epithelial and mesenchymal phenotypes were confirmed in the TSU-Pr1 series by cytoskeletal and morphologic analysis, and by performance in a panel of in vitro assays. Metastatic ability was examined following inoculation at various sites. Epithelial characteristics associated with dramatically increased bone and soft tissue colonization after intracardiac or intratibial injection. In contrast, the more epithelial sublines showed decreased lung metastases following orthotopic inoculation, supporting the concept that EMT is important for the escape of tumor cells from the primary tumor. We confirmed the overexpression of the IIIc subtype of multiple fibroblast growth factor receptors (FGFR) through the TSU-Pr1 series, and targeted abrogation of FGFR2IIIc reversed the MET and associated functionality in this system and increased survival following in vivo inoculation in severe combined immunodeficient mice. This model is the first to specifically model steps of the latter part of the metastatic cascade in isogenic cell lines, and confirms the suspected role of MET in secondary tumor growth.


Arthritis & Rheumatism | 2009

Matrix metalloproteinase 13–deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development

Christopher B. Little; A. Barai; Daniel Burkhardt; Susan M. Smith; Amanda J. Fosang; Zena Werb; Manisha Shah; Erik W. Thompson

OBJECTIVE To investigate the role of matrix metalloproteinase 13 (MMP-13; collagenase 3) in osteoarthritis (OA). METHODS OA was surgically induced in the knees of MMP-13-knockout mice and wild-type mice, and mice were compared. Histologic scoring of femoral and tibial cartilage aggrecan loss (0-3 scale), erosion (0-7 scale), and chondrocyte hypertrophy (0-1 scale), as well as osteophyte size (0-3 scale) and maturity (0-3 scale) was performed. Serial sections were stained for type X collagen and the MMP-generated aggrecan neoepitope DIPEN. RESULTS Following surgery, aggrecan loss and cartilage erosion were more severe in the tibia than femur (P<0.01) and tibial cartilage erosion increased with time (P<0.05) in wild-type mice. Cartilaginous osteophytes were present at 4 weeks and underwent ossification, with size and maturity increasing by 8 weeks (P<0.01). There was no difference between genotypes in aggrecan loss or cartilage erosion at 4 weeks. There was less tibial cartilage erosion in knockout mice than in wild-type mice at 8 weeks (P<0.02). Cartilaginous osteophytes were larger in knockout mice at 4 weeks (P<0.01), but by 8 weeks osteophyte maturity and size were no different from those in wild-type mice. Articular chondrocyte hypertrophy with positive type X collagen and DIPEN staining occurred in both wild-type and knockout mouse joints. CONCLUSION Our findings indicate that structural cartilage damage in a mouse model of OA is dependent on MMP-13 activity. Chondrocyte hypertrophy is not regulated by MMP-13 activity in this model and does not in itself lead to cartilage erosion. MMP-13 deficiency can inhibit cartilage erosion in the presence of aggrecan depletion, supporting the potential for therapeutic intervention in established OA with MMP-13 inhibitors.


Cells Tissues Organs | 2007

Vimentin and Epithelial-Mesenchymal Transition in Human Breast Cancer – Observations in vitro and in vivo

Maria I. Kokkinos; Razan Wafai; Meng Kang Wong; Donald F. Newgreen; Erik W. Thompson; Mark Waltham

Breast cancer is a highly prevalent disease among women worldwide. While the expression of certain proteins within these tumours is used for prognosis and selection of therapies, there is a continuing need for additional markers to be identified. A considerable amount of current literature, based predominantly on cell culture systems, suggests that a major mechanism responsible for the progression of breast cancer is due to tumour cells losing their epithelial features and gaining mesenchymal properties. These events are proposed to be very similar to the epithelial-mesenchymal transition (EMT) process that has been well characterised in embryonic development. For the developmental and putative cancer EMT, the cell intermediate filament status changes from a keratin-rich network which connects to adherens junctions and hemidesmosomes, to a vimentin-rich network connecting to focal adhesions. This review summarises observations of vimentin expression in breast cancer model systems, and discusses the potential role of EMT in human breast cancer progression, and the prognostic usefulness of vimentin expression.


The FASEB Journal | 2002

MT1-MMP expression promotes tumor growth and angiogenesis through an up-regulation of vascular endothelial growth factor expression

Nor Eddine Sounni; Laetitia Devy; Amin Hajitou; Francis Frankenne; Carine Munaut; Christine Gilles; Christophe Deroanne; Erik W. Thompson; Jean-Michel Foidart; Agnès Noël

Membrane type 1 metalloprotease (MT1‐MMP) is a transmembrane metalloprotease that plays a major role in the extracellular matrix remodeling, directly by degrading several of its components and indirectly by activating pro‐MMP 2. We investigated the effects of MT1‐MMP overexpression on in vitro and in vivo properties of human breast adenocarcinoma MCF7 cells, which do not express MT1‐MMP or MMP‐2. MT1‐MMP and MMP‐2 cDNAs were either transfected alone or cotransfected. All clones overexpressing MT1‐MMP 1) were able to activate endogenous or exogenous pro‐MMP‐2, 2) displayed an enhanced in vitro invasiveness through matrigel‐coated filters independent of MMP‐2 transfection, 3) induced the rapid development of highly vascularized tumors when injected subcutanously in nude mice, and 4) promoted blood vessels sprouting in the rat aortic ring assay. These effects were observed in all clones overexpressing MT1‐MMP regardless of MMP‐2 expression levels, suggesting that the production of MMP‐2 by tumor cells themselves does not play a critical role in these events. The angiogenic phenotype of MT1‐MMP‐producing cells was associated with an up‐regulation of VEGF expression. These results emphasize the importance of MT1‐MMP during tumor angiogenesis and open new opportunities for the development of anti‐angiogenic strategies combining inhibitors of MT1‐MMP and VEGF antagonists.—Sounni, N. E., Devy, L., Hajitou, A., Frankenne, F., Munaut, C., Gilles, C., Deroanne, C., Thompson, E. W., Foidart, J. M., Noel, A. MT1‐MMP expression promotes tumor growth and angiogenesis through an up‐regulation of vascular en‐dothelial growth factor expression. FASEB J. 16, 555–564 (2002)


Cells Tissues Organs | 2007

Mesenchymal to Epithelial Transition in Development and Disease

Christine L. Chaffer; Erik W. Thompson; Elizabeth D. Williams

Cellular plasticity is fundamental to embryonic development. The importance of cellular transitions in development is first apparent during gastrulation when the process of epithelial to mesenchymal transition transforms polarized epithelial cells into migratory mesenchymal cells that constitute the embryonic and extraembryonic mesoderm. It is now widely accepted that this developmental pathway is exploited in various disease states, including cancer progression. The loss of epithelial characteristics and the acquisition of a mesenchymal-like migratory phenotype are crucial to the development of invasive carcinoma and metastasis. However, given the morphological similarities between primary tumour and metastatic lesions, it is likely that tumour cells re-activate certain epithelial properties through a mesenchymal to epithelial transition (MET) at the secondary site, although this is yet to be proven. MET is also an essential developmental process and has been extensively studied in kidney organogenesis and somitogenesis. In this review we describe the process of MET, highlight important mediators, and discuss their implication in the context of cancer progression.


Journal of Mammary Gland Biology and Neoplasia | 2010

Epithelial Mesenchymal Transition Traits in Human Breast Cancer Cell Lines Parallel the CD44hi/CD24lo/- Stem Cell Phenotype in Human Breast Cancer

Tony Blick; Honor J. Hugo; Edwin Widodo; Mark Waltham; Cletus Pinto; Sendurai A. Mani; Robert A. Weinberg; Richard M. Neve; Marc E. Lenburg; Erik W. Thompson

We review here the recently emerging relationship between epithelial-mesenchymal transition (EMT) and breast cancer stem cells (BCSC), and provide analyses of published data on human breast cancer cell lines, supporting their utility as a model for the EMT/BCSC state. Genome-wide transcriptional profiling of these cell lines has confirmed the existence of a subgroup with mesenchymal tendencies and enhanced invasive properties (‘Basal B’/Mesenchymal), distinct from subgroups with either predominantly luminal (‘Luminal’) or mixed basal/luminal (‘Basal A’) features (Neve et al. Cancer Cell, 2006). A literature-derived EMT gene signature has shown specific enrichment within the Basal B subgroup of cell lines, consistent with their over-expression of various EMT transcriptional drivers. Basal B cell lines are found to resemble BCSC, being CD44highCD24low. Moreover, gene products that distinguish Basal B from Basal A and Luminal cell lines (Basal B Discriminators) showed close concordance with those that define BCSC isolated from clinical material, as reported by Shipitsin et al. (Cancer Cell, 2007). CD24 mRNA levels varied across Basal B cell lines, correlating with other Basal B Discriminators. Many gene products correlating with CD24 status in Basal B cell lines were also differentially expressed in isolated BCSC. These findings confirm and extend the importance of the cellular product of the EMT with Basal B cell lines, and illustrate the value of analysing these cell lines for new leads that may improve breast cancer outcomes. Gene products specific to Basal B cell lines may serve as tools for the detection, quantification, and analysis of BCSC/EMT attributes.

Collaboration


Dive into the Erik W. Thompson's collaboration.

Top Co-Authors

Avatar

Wayne A. Morrison

St. Vincent's Health System

View shared research outputs
Top Co-Authors

Avatar

Tony Blick

St. Vincent's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Mark Waltham

St. Vincent's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Elizabeth D. Williams

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Keren M. Abberton

St. Vincent's Health System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Honor J. Hugo

St. Vincent's Institute of Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge