Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erika A. Roman is active.

Publication


Featured researches published by Erika A. Roman.


PLOS ONE | 2009

High-fat diet induces apoptosis of hypothalamic neurons.

Juliana C. Moraes; Andressa Coope; Joseane Morari; Dennys E. Cintra; Erika A. Roman; José Rodrigo Pauli; Talita Romanatto; José B.C. Carvalheira; Alexandre Leite Rodrigues de Oliveira; Mario J.A. Saad; Lício A. Velloso

Consumption of dietary fats is amongst the most important environmental factors leading to obesity. In rodents, the consumption of fat-rich diets blunts leptin and insulin anorexigenic signaling in the hypothalamus by a mechanism dependent on the in situ activation of inflammation. Since inflammatory signal transduction can lead to the activation of apoptotic signaling pathways, we evaluated the effect of high-fat feeding on the induction of apoptosis of hypothalamic cells. Here, we show that consumption of dietary fats induce apoptosis of neurons and a reduction of synaptic inputs in the arcuate nucleus and lateral hypothalamus. This effect is dependent upon diet composition, and not on caloric intake, since pair-feeding is not sufficient to reduce the expression of apoptotic markers. The presence of an intact TLR4 receptor, protects cells from further apoptotic signals. In diet-induced inflammation of the hypothalamus, TLR4 exerts a dual function, on one side activating pro-inflammatory pathways that play a central role in the development of resistance to leptin and insulin, and on the other side restraining further damage by controlling the apoptotic activity.


web science | 2012

Inhibition of Hypothalamic Inflammation Reverses Diet-Induced Insulin Resistance in the Liver

Marciane Milanski; Ana Paula Arruda; Andressa Coope; Letícia M. Ignacio-Souza; Carla E. Nunez; Erika A. Roman; Talita Romanatto; Lívia Bitencourt Pascoal; Andrea M. Caricilli; Marcio Alberto Torsoni; Patrícia O. Prada; Mario J.A. Saad; Lício A. Velloso

Defective liver gluconeogenesis is the main mechanism leading to fasting hyperglycemia in type 2 diabetes, and, in concert with steatosis, it is the hallmark of hepatic insulin resistance. Experimental obesity results, at least in part, from hypothalamic inflammation, which leads to leptin resistance and defective regulation of energy homeostasis. Pharmacological or genetic disruption of hypothalamic inflammation restores leptin sensitivity and reduces adiposity. Here, we evaluate the effect of a hypothalamic anti-inflammatory approach to regulating hepatic responsiveness to insulin. Obese rodents were treated by intracerebroventricular injections, with immunoneutralizing antibodies against Toll-like receptor (TLR)4 or tumor necrosis factor (TNF)α, and insulin signal transduction, hepatic steatosis, and gluconeogenesis were evaluated. The inhibition of either TLR4 or TNFα reduced hypothalamic inflammation, which was accompanied by the reduction of hypothalamic resistance to leptin and improved insulin signal transduction in the liver. This was accompanied by reduced liver steatosis and reduced hepatic expression of markers of steatosis. Furthermore, the inhibition of hypothalamic inflammation restored defective liver glucose production. All these beneficial effects were abrogated by vagotomy. Thus, the inhibition of hypothalamic inflammation in obesity results in improved hepatic insulin signal transduction, leading to reduced steatosis and reduced gluconeogenesis. All these effects are mediated by parasympathetic signals delivered by the vagus nerve.


Journal of Biological Chemistry | 2009

Deletion of tumor necrosis factor-alpha-receptor 1 (TNFR1) protects against diet-induced obesity by means of increased thermogenesis

Talita Romanatto; Erika A. Roman; Ana Paula Arruda; Raphael G.P. Denis; Carina Solon; Marciane Milanski; Juliana C. Moraes; Maria Lúcia Bonfleur; Giovanna R. Degasperi; Paty K. Picardi; Sandro M. Hirabara; Antonio C. Boschero; Rui Curi; Lício A. Velloso

In diet-induced obesity, hypothalamic and systemic inflammatory factors trigger intracellular mechanisms that lead to resistance to the main adipostatic hormones, leptin and insulin. Tumor necrosis factor-α (TNF-α) is one of the main inflammatory factors produced during this process and its mechanistic role as an inducer of leptin and insulin resistance has been widely investigated. Most of TNF-α inflammatory signals are delivered by TNF receptor 1 (R1); however, the role played by this receptor in the context of obesity-associated inflammation is not completely known. Here, we show that TNFR1 knock-out (TNFR1 KO) mice are protected from diet-induced obesity due to increased thermogenesis. Under standard rodent chow or a high-fat diet, TNFR1 KO gain significantly less body mass despite increased caloric intake. Visceral adiposity and mean adipocyte diameter are reduced and blood concentrations of insulin and leptin are lower. Protection from hypothalamic leptin resistance is evidenced by increased leptin-induced suppression of food intake and preserved activation of leptin signal transduction through JAK2, STAT3, and FOXO1. Under the high-fat diet, TNFR1 KO mice present a significantly increased expression of the thermogenesis-related neurotransmitter, TRH. Further evidence of increased thermogenesis includes increased O2 consumption in respirometry measurements, increased expressions of UCP1 and UCP3 in brown adipose tissue and skeletal muscle, respectively, and increased O2 consumption by isolated skeletal muscle fiber mitochondria. This demonstrates that TNF-α signaling through TNFR1 is an important mechanism involved in obesity-associated defective thermogenesis.


Journal of Nutritional Biochemistry | 2012

Maternal high-fat feeding through pregnancy and lactation predisposes mouse offspring to molecular insulin resistance and fatty liver.

Nicole G. Ashino; Karen N. Saito; Flavia D. Souza; Fernanda S. Nakutz; Erika A. Roman; Lício A. Velloso; Adriana Souza Torsoni; Marcio Alberto Torsoni

The exposure to an increased supply of nutrients before birth may contribute to offspring obesity. Offspring from obese dams that chronically consume a high-fat diet present clinical features of metabolic syndrome, liver lipid accumulation and activation of c-Jun N-terminal kinases (JNK) consistent with the development of nonalcoholic fatty liver disease (NAFLD). However, in spite of the importance of the resistance to insulin for the development of NAFLD, the molecular alterations in the liver of adult offspring of obese dams are yet to be investigated. In this study, we tested the hypothesis that the consumption of excessive saturated fats during pregnancy and lactation contributes to adult hepatic metabolic dysfunction in offspring. Adult male offspring of dams fed a high-fat diet (HN) during pregnancy and lactation exhibited increased fat depot weight; increased serum insulin, tumor necrosis factor α and interleukin 1β; and reduced serum triglycerides. Liver showed increased JNK and I kappa B kinase phosphorylation and PEPCK expression in the adult. In addition, liver triglyceride content in the offspring 1 week after weaning and in the adult was increased. Moreover, basal ACC phosphorylation and insulin signaling were reduced in the liver from the HN group as compared to offspring of dams fed a standard laboratory chow (NN). Hormone-sensitive lipase phosphorylation (Ser565) was reduced in epididymal adipose tissue from the HN group as compared to the NN group. It is interesting that all changes observed were independent of postweaning diet in 14-week-old offspring. Therefore, these data further reinforce the importance of maternal nutrition to adult offspring health.


Peptides | 2007

TNF-α acts in the hypothalamus inhibiting food intake and increasing the respiratory quotient—Effects on leptin and insulin signaling pathways

Talita Romanatto; Maristela Cesquini; Maria do Carmo Estanislau do Amaral; Erika A. Roman; Juliana C. Moraes; Marcio Alberto Torsoni; Ariovaldo P. Cruz-Neto; Lício A. Velloso

Acting in the hypothalamus, tumor necrosis factor-alpha (TNF-alpha) produces a potent anorexigenic effect. However, the molecular mechanisms involved in this phenomenon are poorly characterized. In this study, we investigate the capacity of TNF-alpha to activate signal transduction in the hypothalamus through elements of the pathways employed by the anorexigenic hormones insulin and leptin. High dose TNF-alpha promotes a reduction of 25% in 12h food intake, which is an inhibitory effect that is marginally inferior to that produced by insulin and leptin. In addition, high dose TNF-alpha increases body temperature and respiratory quotient, effects not reproduced by insulin or leptin. TNF-alpha, predominantly at the high dose, is also capable of activating canonical pro-inflammatory signal transduction in the hypothalamus, inducing JNK, p38, and NFkappaB, which results in the transcription of early responsive genes and expression of proteins of the SOCS family. Also, TNF-alpha activates signal transduction through JAK-2 and STAT-3, but does not activate signal transduction through early and intermediary elements of the insulin/leptin signaling pathways such as IRS-2, Akt, ERK and FOXO1. When co-injected with insulin or leptin, TNF-alpha, at both high and low doses, partially impairs signal transduction through IRS-2, Akt, ERK and FOXO1 but not through JAK-2 and STAT-3. This effect is accompanied by the partial inhibition of the anorexigenic effects of insulin and leptin, when the low, but not the high dose of TNF-alpha is employed. In conclusion, TNF-alpha, on a dose-dependent way, modulates insulin and leptin signaling and action in the hypothalamus.


Molecular and Cellular Endocrinology | 2010

Central leptin action improves skeletal muscle AKT, AMPK, and PGC1α activation by hypothalamic PI3K-dependent mechanism

Erika A. Roman; Daniel Reis; Talita Romanatto; Denis Maimoni; Eduardo A. Ferreira; Gustavo Aparecido dos Santos; Adriana Souza Torsoni; Lício A. Velloso; Marcio Alberto Torsoni

Central leptin action requires PI3K activity to modulate glucose homeostasis and peripheral metabolism. However, the mechanism behind this phenomenon is not clearly understood. We hypothesize that hypothalamic PI3K activity is important for the modulation of the AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) pathway, PGC1 alpha, and AKT in skeletal muscle (SM). To address this issue, we injected leptin into the lateral ventricle of rats. Hypothalamic JAK2 and AKT were activated by intracerebroventricular (ICV) injection of leptin in a time-dependent manner. Central leptin improved tolerance to glucose (GTT), increased PGC1 alpha expression, and AKT, AMPK, ACC and JAK2 phosphorylation in the soleus muscle. Previous ICV administration of either LY294002 or propranolol (IP) blocked these effects. We concluded that the activation of the hypothalamic PI3K pathway is important for leptin-induced AKT phosphorylation, as well as for active catabolic pathway through AMPK and PGC1 alpha in SM. Thus, a defective leptin signalling PI3K pathway in the hypothalamus may contribute to peripheral resistance to insulin associated to diet-induced obesity.


Journal of Endocrinology | 2008

Intracerebroventricular injection of citrate inhibits hypothalamic AMPK and modulates feeding behavior and peripheral insulin signaling

Graziela R. Stoppa; Maristela Cesquini; Erika A. Roman; Patrícia O. Prada; Adriana Souza Torsoni; Talita Romanatto; Mario J.A. Saad; Lício A. Velloso; Marcio Alberto Torsoni

We hypothesized that citrate might modulate the AMP-activated protein kinase/acetyl-CoA carboxylase (AMPK)/(ACC) pathway and participate in neuronal feeding control and glucose homeostasis. To address this issue, we injected citrate into the lateral ventricle of rats. Intracerebroventricular (ICV) injection of citrate diminished the phosphorylation of hypothalamic AMPK/ACC, increased the expression of anorexigenic neuropeptide (pro-opiomelanocortin and corticotropin-releasing hormone), elevated the level of malonyl-CoA in the hypothalamus, and reduced food intake. No change was observed in the concentration of blood insulin after the injection of citrate. With a euglycemic-hyperinsulinemic clamp, the glucose infusion rate was higher in the citrate group than in the control group (28.6+/-0.8 vs 19.3+/-0.2 mU/kg body weight/min respectively), and so was glucose uptake in skeletal muscle and the epididymal fat pad. Concordantly, insulin receptor (IR), IR substrate type 1 (IRS1), IRS2, and protein kinase B (AKT) phosphorylation in adipose tissue and skeletal muscle was improved by citrate ICV treatment. Moreover, the treatment with citrate for 7 days promoted body weight loss and decreased the adipose tissue. Our results suggest that citrate and glucose may serve as signals of energy and nutrient availability to hypothalamic cells.


web science | 2012

Taurine enhances the anorexigenic effects of insulin in the hypothalamus of rats.

Carina Solon; Daniel Franci; Letícia M. Ignacio-Souza; Talita Romanatto; Erika A. Roman; Ana Paula Arruda; Joseane Morari; Adriana Souza Torsoni; Everardo M. Carneiro; Lício A. Velloso

Taurine is known to modulate a number of metabolic parameters such as insulin secretion and action and blood cholesterol levels. Recent data have suggested that taurine can also reduce body adiposity in C. elegans and in rodents. Since body adiposity is mostly regulated by insulin-responsive hypothalamic neurons involved in the control of feeding and thermogenesis, we hypothesized that some of the activity of taurine in the control of body fat would be exerted through a direct action in the hypothalamus. Here, we show that the intracerebroventricular injection of an acute dose of taurine reduces food intake and locomotor activity, and activates signal transduction through the Akt/FOXO1, JAK2/STAT3 and mTOR/AMPK/ACC signaling pathways. These effects are accompanied by the modulation of expression of NPY. In addition, taurine can enhance the anorexigenic action of insulin. Thus, the aminoacid, taurine, exerts a potent anorexigenic action in the hypothalamus and enhances the effect of insulin on the control of food intake.


The Journal of Physiology | 2005

Activation of AMPK in rat hypothalamus participates in cold‐induced resistance to nutrient‐dependent anorexigenic signals

Erika A. Roman; Maristela Cesquini; Graziela R. Stoppa; José B.C. Carvalheira; Marcio Alberto Torsoni; Lício A. Velloso

The exposure of homeothermic animals to a cold environment leads to a powerful activation of orexigenic signalling which is accompanied by molecular and functional resistance to insulin‐induced inhibition of feeding. Recent evidence suggests that AMPK participates in nutrient‐dependent control of satiety and adiposity. The objective of the present study was to evaluate the effect of cold exposure upon the molecular activation of AMPK signalling in the hypothalamus of rats. Immunoblotting demonstrated that cold exposure per se is sufficient for inducing, on a time‐dependent basis, the molecular activation of the serine/threonine kinase AMP‐activated protein kinase (AMPK) and inactivation of the acetyl‐CoA carboxylase (ACC). These molecular phenomena were accompanied by resistance to nutrient‐induced inactivation of AMPK and activation of ACC. Moreover, cold‐exposure led to a partial inhibition of a feeding‐induced anorexigenic response, which was paralleled by resistance to insulin‐induced suppression of feeding. Finally, cold exposure significantly impaired insulin‐induced inhibition of AMPK through a mechanism dependent on the molecular cross‐talk between phosphatidylinositol‐3(PI3)‐kinase/Akt and AMPK. In conclusion, increased feeding during cold exposure results, at least in part, from resistance to insulin‐ and nutrient‐dependent anorexigenic signalling in the hypothalamus.


Metabolism-clinical and Experimental | 2010

The role of proliferator-activated receptor γ coactivator–1α in the fatty-acid–dependent transcriptional control of interleukin-10 in hepatic cells of rodents

Joseane Morari; Adriana Souza Torsoni; Gabriel F. Anhê; Erika A. Roman; Dennys E. Cintra; Laura Sterian Ward; Silvana Bordin; Lício A. Velloso

Interleukin-10 (IL-10) is an endogenous factor that restrains hepatic insulin resistance in diet-induced steatosis. Reducing IL-10 expression increases proinflammatory activity in the steatotic liver and worsens insulin resistance. As the transcriptional coactivator proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) plays a central role in dysfunctional hepatocytic activity in diet-induced steatosis, we hypothesized that at least part of the action of PGC-1alpha could be mediated by reducing the transcription of the IL-10 gene. Here, we used immunoblotting, real-time polymerase chain reaction, immunocytochemistry, and chromatin immunoprecipitation assay to investigate the role of PGC-1alpha in the control of IL-10 expression in hepatic cells. First, we show that, in the intact steatotic liver, the expressions of IL-10 and PGC-1alpha are increased. Inhibiting PGC-1alpha expression by antisense oligonucleotide increases IL-10 expression and reduces the steatotic phenotype. In cultured hepatocytes, the treatment with saturated and unsaturated fatty acids increased IL-10 expression. This was accompanied by increased association of PGC-1alpha with c-Maf and p50-nuclear factor (NF) kappaB, 2 transcription factors known to modulate IL-10 expression. In addition, after fatty acid treatment, PGC-1alpha, c-Maf, and p50-NFkappaB migrate from the cytosol to the nuclei of hepatocytes and bind to the IL-10 promoter region. Inhibiting NFkappaB activation with salicylate reduces IL-10 expression and the association of PGC-1alpha with p50-NFkappaB. Thus, PGC-1alpha emerges as a potential transcriptional regulator of the inflammatory phenomenon taking place in the steatotic liver.

Collaboration


Dive into the Erika A. Roman's collaboration.

Top Co-Authors

Avatar

Lício A. Velloso

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Talita Romanatto

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carina Solon

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Paula Arruda

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseane Morari

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Maristela Cesquini

State University of Campinas

View shared research outputs
Researchain Logo
Decentralizing Knowledge