Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erika C. Crouch is active.

Publication


Featured researches published by Erika C. Crouch.


Journal of Immunology | 2001

Surfactant Protein D Enhances Clearance of Influenza A Virus from the Lung In Vivo

Ann Marie LeVine; Jeffrey A. Whitsett; Kevan L. Hartshorn; Erika C. Crouch; Thomas R. Korfhagen

Mice lacking surfactant protein surfactant protein D (SP-D−/−) and wild-type mice (SP-D+/+) were infected with influenza A virus (IAV) by intranasal instillation. IAV infection increased the endogenous SP-D concentration in wild-type mice. SP-D-deficient mice showed decreased viral clearance of the Phil/82 strain of IAV and increased production of inflammatory cytokines in response to viral challenge. However, the less glycosylated strain of IAV, Mem/71, which is relatively resistant to SP-D in vitro, was cleared efficiently from the lungs of SP-D−/− mice. Viral clearance of the Phil/82 strain of IAV and the cytokine response were both normalized by the coadministration of recombinant SP-D. Since the airway is the usual portal of entry for influenza A virus and other respiratory pathogens, SP-D is likely to play an important role in innate defense responses to IAV.


Immunological Reviews | 2000

Collectins and pulmonary innate immunity

Erika C. Crouch; Kevan L. Hartshorn; Itzhak Ofek

Summary: The surfactant‐associated proteins SP‐A and SP‐D are members of a family of host defense lectins, designated collectins. There is increasing evidence that these pulmonary, epithelial‐derived proteins are important components of the innate immune response to microbial challenge and participate in other aspects of immune and inflammatory regulation within the lung. Both proteins bind to glycoconjugates and/or lipid moieties expressed by a wide variety of microorganisms, and to certain organic particles, such as pollens. SP‐A and SP‐D have the capacity to modulate leukocyte function and, in some circumstances, to opsonize and enhance the killing of microorganisms. The biologic activity of cell wall components, such as Gram‐negative bacterial polysaccharides, or viral glycoproteins, such as the hemagglutinin of influenza viruses, may be altered by interactions with collectins. In addition, complementary or cooperative interactions between SP‐A, SP‐D and other host defense lectins could contribute to the efficiency of this defense system. Collectins could play particularly important roles in settings of inadequate or impaired specific immunity, and acquired alterations in the levels of active collectins within the airspaces and distal airways may increase susceptibility to infection.


American Journal of Physiology-lung Cellular and Molecular Physiology | 1998

Pulmonary surfactant proteins A and D enhance neutrophil uptake of bacteria

Kevan L. Hartshorn; Erika C. Crouch; Mitchell R. White; Maria Luisa Colamussi; Anand Kakkanatt; Benjamin Tauber; Virginia L. Shepherd; Kedarnath N. Sastry

The collectins are a class of collagenous lectin proteins present in serum and pulmonary secretions [pulmonary surfactant protein (SP) A and SP-D] that are believed to participate in innate immune responses to various pathogens. With the use of flow cytometric and fluorescent-microscopic assays, SP-A and SP-D were shown to increase calcium-dependent neutrophil uptake of Escherichia coli, Streptococcus pneumoniae, and Staphylococcus aureus. Evidence is provided that the collectins enhanced bacterial uptake through a mechanism that involved both bacterial aggregation and direct actions on neutrophils. The degree of multimerization of SP-D preparations was a critical determinant of both aggregating activity and potency in enhancing bacterial uptake. The mechanisms of opsonizing activity of SP-D and SP-A differed in important respects from those of opsonizing antibodies. These results provide the first evidence that surfactant collectins may promote neutrophil-mediated clearance of bacteria in the lung independently of opsonizing antibody.


Respiratory Research | 2000

Surfactant protein-D and pulmonary host defense

Erika C. Crouch

Surfactant protein-D (SP-D) participates in the innate response to inhaled microorganisms and organic antigens, and contributes to immune and inflammatory regulation within the lung. SP-D is synthesized and secreted by alveolar and bronchiolar epithelial cells, but is also expressed by epithelial cells lining various exocrine ducts and the mucosa of the gastrointestinal and genitourinary tracts. SP-D, a collagenous calcium-dependent lectin (or collectin), binds to surface glycoconjugates expressed by a wide variety of microorganisms, and to oligosaccharides associated with the surface of various complex organic antigens. SP-D also specifically interacts with glycoconjugates and other molecules expressed on the surface of macrophages, neutrophils, and lymphocytes. In addition, SP-D binds to specific surfactant-associated lipids and can influence the organization of lipid mixtures containing phosphatidylinositol in vitro. Consistent with these diverse in vitro activities is the observation that SP-D-deficient transgenic mice show abnormal accumulations of surfactant lipids, and respond abnormally to challenge with respiratory viruses and bacterial lipopolysaccharides. The phenotype of macrophages isolated from the lungs of SP-D-deficient mice is altered, and there is circumstantial evidence that abnormal oxidant metabolism and/or increased metalloproteinase expression contributes to the development of emphysema. The expression of SP-D is increased in response to many forms of lung injury, and deficient accumulation of appropriately oligomerized SP-D might contribute to the pathogenesis of a variety of human lung diseases.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2009

Lung environment determines unique phenotype of alveolar macrophages

Amanda M. Guth; William J. Janssen; Catharine M. Bosio; Erika C. Crouch; Peter M. Henson; Steven W. Dow

Alveolar macrophages (AM) are the most abundant antigen-presenting cells in the lungs, and they play a critical role in regulating pulmonary immune responses to inhaled pathogens and to allergens. However, compared with macrophages in other body sites, AM have an unusual phenotype that, in many respects, resembles the phenotype of dendritic cells (DC). Therefore, to more fully define the unique nature of AM, we compared the phenotype and function of AM with the phenotype and function of resident peritoneal lavage-derived macrophages (PLM). We found striking phenotypic differences between AM and PLM, particularly with regard to CD11c expression, and we also observed that AM had a significantly better antigen-presenting capability than PLM. Therefore, we investigated the role of the local airway environment in generation of the unusual phenotype of AM. We carried out cell transfer experiments to compare macrophage differentiation in the airways with that in the peritoneal cavity. We observed significant upregulation of CD11c expression on bone marrow macrophages and peritoneal macrophages when they were adoptively transferred into the airways. In contrast, CD11c expression was not upregulated after cell transfer into the peritoneal cavity, whereas CD11b expression was significantly increased. In vitro, culture of bone marrow-adherent cells with surfactant protein D (SP-D) or granulocyte/macrophage colony-stimulating factor (GM-CSF) induced significant upregulation of CD11c expression, and in vivo GM-CSF concentrations were significantly higher in bronchoalveolar than in peritoneal lavage fluid. Finally, GM-CSF(-/-) mice failed to develop CD11c(+) AM, but CD11c(+) AM were present in SP-D(-/-) mice. However, macrophages from GM-CSF(-/-) bone marrow could upregulate CD11c expression when transferred to the airways of wild-type mice. These results suggest that the airway environment promotes development of macrophages with unique DC-like characteristics and that this unusual phenotype is determined, to a large degree, by locally high concentrations of GM-CSF and, possibly, SP-D.


Biochimica et Biophysica Acta | 1998

Structure, biologic properties, and expression of surfactant protein D (SP-D)

Erika C. Crouch

Surfactant protein D (SP-D) is a member of the family of collagenous host defense lectins, designated collectins. There is increasing evidence that SP-D, like SP-A, is an important component of the innate immune response to microbial challenge, and that it may participate in other aspects of immune and inflammatory regulation within the lung. SP-D binds to glycoconjugates and/or lipid moieties expressed by a wide variety of microorganisms and certain other organic particles, in vitro. Although binding may facilitate microbial clearance through aggregation or other direct effects on the organism, SP-D also has the capacity to modulate leukocyte function, and in some circumstances, to enhance their killing of microorganisms.


Journal of Immunology | 2008

Antiviral Activity of the Long Chain Pentraxin PTX3 against Influenza Viruses

Patrick C. Reading; Silvia Bozza; Brad Gilbertson; Michelle D. Tate; Silvia Moretti; Emma R. Job; Erika C. Crouch; Andrew G. Brooks; Lorena E. Brown; Barbara Bottazzi; Luigina Romani; Alberto Mantovani

Proteins of the innate immune system can act as natural inhibitors of influenza virus, limiting growth and spread of the virus in the early stages of infection before the induction of adaptive immune responses. In this study, we identify the long pentraxin PTX3 as a potent innate inhibitor of influenza viruses both in vitro and in vivo. Human and murine PTX3 bound to influenza virus and mediated a range of antiviral activities, including inhibition of hemagglutination, neutralization of virus infectivity and inhibition of viral neuraminidase. Antiviral activity was associated with binding of the viral hemagglutinin glycoprotein to sialylated ligands present on PTX3. Using a mouse model we found PTX3 to be rapidly induced following influenza infection and that PTX3−/− mice were more susceptible than wild-type mice to infection by PTX3-sensitive virus strains. Therapeutic treatment of mice with human PTX3 promoted survival and reduced viral load in the lungs following infection with PTX3-sensitive, but not PTX3-resistant, influenza viruses. Together, these studies describe a novel antiviral role for PTX3 in early host defense against influenza infections both in vitro and in vivo and describe the therapeutic potential of PTX3 in ameliorating disease during influenza infection.


Journal of Immunology | 2005

A Common Polymorphism in the SFTPD Gene Influences Assembly, Function, and Concentration of Surfactant Protein D

Rikke Leth-Larsen; Peter Garred; Henriette Jensenius; Joseph Meschi; Kevan L. Hartshorn; Jens Madsen; Ida Tornøe; Hans O. Madsen; Grith Lykke Sørensen; Erika C. Crouch; Uffe Holmskov

Surfactant protein D (SP-D) plays important roles in the host defense against infectious microorganisms and in regulating the innate immune response to a variety of pathogen-associated molecular pattern. SP-D is mainly expressed by type II cells of the lung, but SP-D is generally found on epithelial surfaces and in serum. Genotyping for three single-nucleotide variations altering amino acids in the mature protein in codon 11 (Met11Thr), 160 (Ala160Thr), and 270 (Ser270Thr) of the SP-D gene was performed and related to the SP-D levels in serum. Individuals with the Thr/Thr11-encoding genotype had significantly lower SP-D serum levels than individuals with the Met/Met11 genotype. Gel filtration chromatography revealed two distinct m.w. peaks with SP-D immunoreactivity in serum from Met/Met11-encoding genotypes. In contrast, Thr/Thr11 genotypes lacked the highest m.w. form. A similar SP-D size distribution was found for recombinant Met11 and Thr11 expressed in human embryonic kidney cells. Atomic force microscopy of purified SP-D showed that components eluting in the position of the high m.w. peak consist of multimers, dodecamers, and monomers of subunits, whereas the second peak exclusively contains monomers. SP-D from both peaks bound to mannan-coated ELISA plates. SP-D from the high m.w. peak bound preferentially to intact influenza A virus and Gram-positive and Gram-negative bacteria, whereas the monomeric species preferentially bound to isolated LPS. Our data strongly suggest that polymorphic variation in the N-terminal domain of the SP-D molecule influences oligomerization, function, and the concentration of the molecule in serum.


Biochemical Journal | 2000

Mechanism of binding of surfactant protein D to influenza A viruses: importance of binding to haemagglutinin to antiviral activity.

Kevan L. Hartshorn; Mitchell R. White; Dennis R. Voelker; John Coburn; Ken S. Zaner; Erika C. Crouch

Collectins are important in the initial containment of a variety of pathogens, including influenza A virus (IAV). We provide the first systematic evaluation of the oligosaccharide-binding sites for pulmonary surfactant protein D (SP-D) on specific IAV coat glycoproteins and define the relationship between this binding and antiviral activity. With the use of several techniques, SP-D was found to bind via its carbohydrate-recognition domain (CRD) to mannosylated, N-linked carbohydrates on the HA(1) domain of the haemagglutinin (HA) and on the neuraminidase of IAV. Using a set of IAV strains that differed in the level and site of glycosylation, and a panel of recombinant collectins, we found that binding of SP-D to the globular domain of the HA was critical in mediating the inhibition of viral haemagglutination activity and infectivity. We also demonstrated that the pattern of binding of a collectin to IAV glycoproteins can be modified by altering the monosaccharide-binding affinity of its CRD or by linking the CRD to a different N-terminal/collagen domain. These studies clarify the mechanisms of viral neutralization by collectins and might be useful in engineering collectins for enhanced antiviral activity.


PLOS Biology | 2008

S-nitrosylation of surfactant protein-D controls inflammatory function.

Chang-Jiang Guo; Elena N. Atochina-Vasserman; Elena Abramova; Joseph P. Foley; Aisha Zaman; Erika C. Crouch; Michael F. Beers; Rashmin C. Savani; Andrew J. Gow

The pulmonary collectins, surfactant proteins A and D (SP-A and SP-D) have been implicated in the regulation of the innate immune system within the lung. In particular, SP-D appears to have both pro- and anti-inflammatory signaling functions. At present, the molecular mechanisms involved in switching between these functions remain unclear. SP-D differs in its quaternary structure from SP-A and the other members of the collectin family, such as C1q, in that it forms large multimers held together by the N-terminal domain, rather than aligning the triple helix domains in the traditional “bunch of flowers” arrangement. There are two cysteine residues within the hydrophobic N terminus of SP-D that are critical for multimer assembly and have been proposed to be involved in stabilizing disulfide bonds. Here we show that these cysteines exist within the reduced state in dodecameric SP-D and form a specific target for S-nitrosylation both in vitro and by endogenous, pulmonary derived nitric oxide (NO) within a rodent acute lung injury model. S-nitrosylation is becoming increasingly recognized as an important post-translational modification with signaling consequences. The formation of S-nitrosothiol (SNO)-SP-D both in vivo and in vitro results in a disruption of SP-D multimers such that trimers become evident. SNO-SP-D but not SP-D, either dodecameric or trimeric, is chemoattractive for macrophages and induces p38 MAPK phosphorylation. The signaling capacity of SNO-SP-D appears to be mediated by binding to calreticulin/CD91. We propose that NO controls the dichotomous nature of this pulmonary collectin and that posttranslational modification by S-nitrosylation causes quaternary structural alterations in SP-D, causing it to switch its inflammatory signaling role. This represents new insight into both the regulation of protein function by S-nitrosylation and NOs role in innate immunity.

Collaboration


Dive into the Erika C. Crouch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Uffe Holmskov

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kelly Smith

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Barbara McDonald

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Grith Lykke Sørensen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge