Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erika Cione is active.

Publication


Featured researches published by Erika Cione.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Identification of 9-cis-retinoic acid as a pancreas-specific autacoid that attenuates glucose-stimulated insulin secretion

Maureen A. Kane; Alexandra E. Folias; Attilio Pingitore; Mariarita Perri; Kristin M. Obrochta; Charles R. Krois; Erika Cione; Joo Yeon Ryu; Joseph L. Napoli

The all-trans-retinoic acid (atRA) isomer, 9-cis-retinoic acid (9cRA), activates retinoic acid receptors (RARs) and retinoid X receptors (RXRs) in vitro. RARs control multiple genes, whereas RXRs serve as partners for RARs and other nuclear receptors that regulate metabolism. Physiological function has not been determined for 9cRA, because it has not been detected in serum or multiple tissues with analytically validated assays. Here, we identify 9cRA in mouse pancreas by liquid chromatography/tandem mass spectrometry (LC/MS/MS), and show that 9cRA decreases with feeding and after glucose dosing and varies inversely with serum insulin. 9cRA reduces glucose-stimulated insulin secretion (GSIS) in mouse islets and in the rat β-cell line 832/13 within 15 min by reducing glucose transporter type 2 (Glut2) and glucokinase (GK) activities. 9cRA also reduces Pdx-1 and HNF4α mRNA expression, ∼8- and 80-fold, respectively: defects in Pdx-1 or HNF4α cause maturity onset diabetes of the young (MODY4 and 1, respectively), as does a defective GK gene (MODY2). Pancreas β-cells generate 9cRA, and mouse models of reduced β-cell number, heterozygous Akita mice, and streptozotocin-treated mice have reduced 9cRA. 9cRA is abnormally high in glucose-intolerant mice, which have β-cell hypertropy, including mice with diet-induced obesity (DIO) and ob/ob and db/db mice. These data establish 9cRA as a pancreas-specific autacoid with multiple mechanisms of action and provide unique insight into GSIS.


Colloids and Surfaces B: Biointerfaces | 2009

Stearyl ferulate-based solid lipid nanoparticles for the encapsulation and stabilization of β-carotene and α-tocopherol

Sonia Trombino; Roberta Cassano; Rita Muzzalupo; Attilio Pingitore; Erika Cione; Nevio Picci

UVA exposure induces DNA damage that could result in skin carcinogenesis. Antioxidants are usually employed as protective agents to avoid this problem: in particular, both beta-carotene and alpha-tocopherol can protect the skin against UVA-induced damage. It is well known that the photochemical instability of these compounds has been a limiting factor for their applications to protect skin. In this study, stearyl ferulate-based solid lipid nanoparticles (SF-SLNs), as vehicles for beta-carotene and alpha-tocopherol, were formulated to improve the stability of these compounds. The SF-SLNs were characterized for entrapment efficiency, size and shape together with their cytotoxicity and capability to inhibit lipid peroxidation. After treatment with a pro-oxidant and/or exposition to sunlight the antioxidants entrapped in SF-SLNs were extremely stable. The results highlighted how SF-SLNs represent a suitable vehicle for beta-carotene and alpha-tocopherol stabilizing and protecting them from degradation. A dermatological formulation in order to prevent skin damages is, therefore, suggested.


American Journal of Pathology | 2009

Combined Low Doses of PPARγ and RXR Ligands Trigger an Intrinsic Apoptotic Pathway in Human Breast Cancer Cells

Daniela Bonofiglio; Erika Cione; Hongyan Qi; Attilio Pingitore; Mariarita Perri; Stefania Catalano; Donatella Vizza; Maria Luisa Panno; Giuseppe Genchi; Suzanne A. W. Fuqua; Sebastiano Andò

Ligand activation of peroxisome proliferator-activated receptor (PPAR)gamma and retinoid X receptor (RXR) induces antitumor effects in cancer. We evaluated the ability of combined treatment with nanomolar levels of the PPARgamma ligand rosiglitazone (BRL) and the RXR ligand 9-cis-retinoic acid (9RA) to promote antiproliferative effects in breast cancer cells. BRL and 9RA in combination strongly inhibit of cell viability in MCF-7, MCF-7TR1, SKBR-3, and T-47D breast cancer cells, whereas MCF-10 normal breast epithelial cells are unaffected. In MCF-7 cells, combined treatment with BRL and 9RA up-regulated mRNA and protein levels of both the tumor suppressor p53 and its effector p21(WAF1/Cip1). Functional experiments indicate that the nuclear factor-kappaB site in the p53 promoter is required for the transcriptional response to BRL plus 9RA. We observed that the intrinsic apoptotic pathway in MCF-7 cells displays an ordinated sequence of events, including disruption of mitochondrial membrane potential, release of cytochrome c, strong caspase 9 activation, and, finally, DNA fragmentation. An expression vector for p53 antisense abrogated the biological effect of both ligands, which implicates involvement of p53 in PPARgamma/RXR-dependent activity in all of the human breast malignant cell lines tested. Taken together, our results suggest that multidrug regimens including a combination of PPARgamma and RXR ligands may provide a therapeutic advantage in breast cancer treatment.


Cell Cycle | 2012

Metabolic remodeling of the tumor microenvironment: Migration stimulating factor (MSF) reprograms myofibroblasts toward lactate production, fueling anabolic tumor growth

Valentina Carito; Gloria Bonuccelli; Ubaldo E. Martinez-Outschoorn; Diana Whitaker-Menezes; Maria Cristina Caroleo; Erika Cione; Anthony Howell; Richard G. Pestell; Michael P. Lisanti; Federica Sotgia

Migration stimulating factor (MSF) is a genetically truncated N-terminal isoform of fibronectin that is highly expressed during mammalian development in fetal fibroblasts, and during tumor formation in human cancer-associated myofibroblasts. However, its potential functional role in regulating tumor metabolism remains unexplored. Here, we generated an immortalized fibroblast cell line that recombinantly overexpresses MSF and studied their properties relative to vector-alone control fibroblasts. Our results indicate that overexpression of MSF is sufficient to confer myofibroblastic differentiation, likely via increased TGF-b signaling. In addition, MSF activates the inflammation-associated transcription factor NFκB, resulting in the onset of autophagy/mitophagy, thereby driving glycolytic metabolism (L-lactate production) in the tumor microenvironment. Consistent with the idea that glycolytic fibroblasts fuel tumor growth (via L-lactate, a high-energy mitochondrial fuel), MSF fibroblasts significantly increased tumor growth, by up to 4-fold. Mechanistic dissection of the MSF signaling pathway indicated that Cdc42 lies downstream of MSF and fibroblast activation. In accordance with this notion, Cdc42 overexpression in immortalized fibroblasts was sufficient to drive myofibroblast differentiation, to provoke a shift towards glycolytic metabolism and to promote tumor growth by up to 2-fold. In conclusion, the MSF/Cdc42/NFκB signaling cascade may be a critical druggable target in preventing “Warburg-like” cancer metabolism in tumor-associated fibroblasts. Thus, MSF functions in the metabolic remodeling of the tumor microenvironment by metabolically reprogramming cancer-associated fibroblasts toward glycolytic metabolism.


Journal of Bioenergetics and Biomembranes | 2008

All-trans-retinoic acid induces apoptosis in Leydig cells via activation of the mitochondrial death pathway and antioxidant enzyme regulation.

Paola Tucci; Erika Cione; Mariarita Perri; Giuseppe Genchi

In addition to playing a fundamental role in diverse processes, such as vision, growth and differentiation, vitamin A and its main biologically active derivative, retinoic acid (RA), are clearly involved in the regulation of testicular functions. The present study was undertaken to examine the direct effect of RA treatment on Leydig (TM-3) cells. TM-3 cells were cultured and treated with varying concentrations of RA for 24h. High doses of RA (1–20μM) induced a decrease in cell vitality and an increase in lipid peroxidation. RA treatment also induced a corresponding increase in apoptosis in the same cells in a dose-dependent manner. Apoptosis proceeded via the mitochondrial dependent pathway, as demonstrated by the release of cytochrome c, caspase-3 enzymatic activation and DNA fragmentation. Conversely, at physiological doses (0.1–500nM) RA did not increase lipid peroxidation or cell death and resulted in an increase of antioxidant enzyme activity.


Molecular and Cellular Biology | 2011

CrbpI Modulates Glucose Homeostasis and Pancreas 9-cis-Retinoic Acid Concentrations

Maureen A. Kane; Alexandra E. Folias; Attilio Pingitore; Mariarita Perri; Charles R. Krois; Joo Yeon Ryu; Erika Cione; Joseph L. Napoli

ABSTRACT Cellular retinol-binding protein type I (CrbpI), encoded by Rpb1, serves as a chaperone of retinol homeostasis, but its physiological effects remain incompletely understood. We show here that the Rbp1−/− mouse has disrupted retinoid homeostasis in multiple tissues, with abnormally high 9-cis-retinoic acid (9cRA), a pancreas autacoid that attenuates glucose-stimulated insulin secretion. The Rbp1−/− pancreas has increased retinol and intense ectopic expression of Rpb2 mRNA, which encodes CrbpII: both would contribute to increased β-cell 9cRA biosynthesis. 9cRA in Rbp1−/− pancreas resists postprandial and glucose-induced decreases. Rbp1−/− mice have defective islet expression of genes involved in glucose sensing and insulin secretion, as well as islet α-cell infiltration, which contribute to reduced glucose-stimulated insulin secretion, high glucagon secretion, an abnormally high rate of gluconeogenesis, and hyperglycemia. A diet rich in vitamin A (as in a standard chow diet) increases pancreas 9cRA and impairs glucose tolerance. Crbp1 attenuates the negative impact of vitamin A (retinol) on glucose tolerance, regardless of the dietary retinol content. Rbp1−/− mice have an increased rate of fatty acid oxidation and resist obesity when fed a high-fat diet. Thus, glucose homeostasis and energy metabolism rely on Rbp1 expression and its moderation of pancreas retinol and of the autacoid 9cRA.


Cell Cycle | 2011

Bid as a potential target of apoptotic effects exerted by low doses of PPARγ and RXR ligands in breast cancer cells.

Daniela Bonofiglio; Erika Cione; Donatella Vizza; Mariarita Perri; Attilio Pingitore; Hongyan Qi; Stefania Catalano; Daniela Rovito; Giuseppe Genchi; Sebastiano Andò

The combined treatment with nanomolar doses of the PPARγ ligand Rosiglitazone (BRL) and the RXR ligand 9-cis‑retinoic acid (9RA) induces a p53-dependent apoptosis in MCF7, SKBR3 and T47D human breast cancer cells. Since MCF7 cells express a wild-type p53 protein, while SKBR3 and T47D cells harbor endogenous mutant p53, we elucidated the mechanism through which PPARγ and RXR ligands triggered apoptotic processes independently of p53 transcriptional activity. We showed an upregulation of Bid expression enhancing the association between Bid/p53 in both cytosol and mitochondria after the ligand treatment. Particularly in the mitochondria, the complex involves the truncated Bid that plays a key role in the apoptotic process induced by BRL and 9RA, since the disruption of mitochondrial membrane potential, the induction of PARP cleavage and the percentage of TUNEL-positive cells were reversed after knocking down Bid. Moreover, PPARγ and RXR ligands were able to reduce mitochondrial GST activity, which was no longer noticeable silencing Bid expression, suggesting the potential of Bid in the regulation of mitochondrial intracellular reactive oxygen species scavenger activity. Our data, providing new insight into the role of p53/Bid complex at the mitochondria in promoting breast cancer cell apoptosis upon low doses of PPARγ and RXR ligands, address Bid as a potential target in the novel therapeutical strategies for breast cancer.


Biochimica et Biophysica Acta | 2012

Localization of nerve growth factor (NGF) receptors in the mitochondrial compartment: characterization and putative role.

Valentina Carito; Attilio Pingitore; Erika Cione; Ida Perrotta; Domenico Mancuso; Antonio Russo; Giuseppe Genchi; Maria Cristina Caroleo

BACKGROUND The neurotrophin NGF receptors trkA and p75NTR are expressed in the central and peripheral nervous system as well as in non-neuronal tissues; originally described to localize to the plasma membrane, recent studies have suggested other intracellular localizations for both NGF receptors. SCOPE OF REVIEW In order to determine whether NGF receptors localize to the mitochondrial compartment mitochondria isolated from human kidney, rat tissues and a human podocyte as cell line before and after differentiation were used. MAJOR CONCLUSIONS Our results demonstrate that NGF receptors are localized in the mitochondrial compartment of undifferentiated human podocytes and in all tissues analyzed including rat central nervous system. In mitochondria p75NTR, but not trkA, co-immunoprecipitates with the adenine nucleotide translocator (ANT) and the phosphodiesterase 4 isoform A5 (PDE4A5). Moreover, NGF, via trkA, protects isolated mitochondria of rat brain cortex from mitochondrial permeability transition induced by Ca(2+). GENERAL SIGNIFICANCE Although NGF receptors have been described as mainly citoplasmatic so far, we proved evidence of their expression at the mitochondrial level and their interaction with specific proteins. Our results demonstrating the expression of NGF receptors in the mitochondria provide new insights into the role of NGF at subcellular level, in different areas of the organism, including CNS.


Biochimica et Biophysica Acta | 2009

Influence of all-trans-retinoic acid on oxoglutarate carrier via retinoylation reaction.

Erika Cione; Attilio Pingitore; Mariarita Perri; Giuseppe Genchi

All-trans-retinoic acid (atRA), an activated metabolite of vitamin A, is incorporated covalently into proteins both invivo and invitro. AtRA reduced the transport activity of the oxoglutarate carrier (OGC) isolated from testes mitochondria to 58% of control via retinoylation reaction. Labeling of testes mitochondrial proteins with (3)HatRA demonstrated the binding of atRA to a 31.5 KDa protein. This protein was identified as OGC due to the competition for the labeling reaction with 2-oxoglutarate, the specific OGC substrate. The role of retinoylated proteins is currently being explored and here we have the first evidence that retinoic acids bind directly to OGC and inhibit its activity in rat testes mitochondria via retinoylation reaction. This study indicates the evidence of a specific interaction between atRA and OGC and establishes a novel mechanism for atRA action, which could influence the physiological biosynthesis of testosterone in situations such as retinoic acid treatment.


Journal of Bioenergetics and Biomembranes | 2008

Retinoic acid-induced testosterone production and retinoylation reaction are concomitant and exhibit a positive correlation in Leydig (TM-3) cells

Paola Tucci; Erika Cione; Giuseppe Genchi

Retinoic acid (RA) exerts diverse biological effects in the control of cell growth in embryogenesis and oncogenesis. The effects of RA are thought to be mediated by the nuclear retinoid receptors; however, not all the effects of RA can be explained by the nuclear receptor pathways. Indeed, retinoylation is another mechanism of action elicited by RA. In growing TM-3 Leydig cell cultures, the extent of retinoylation depends in a saturable manner on the initial concentration of 3H-RA, time and cell number. In addition, dose-response curves for RA-induced testosterone production and retinoylation are concomitant and exhibit a positive correlation. In the present study we demonstrate that RA is able to influence a retinoylation reaction on protein(s) probably involved on steroidogenesis.

Collaboration


Dive into the Erika Cione's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luca Gallelli

Health Science University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paola Tucci

University of Calabria

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge