Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erika Coppola is active.

Publication


Featured researches published by Erika Coppola.


Journal of Climate | 2011

Higher Hydroclimatic Intensity with Global Warming

Filippo Giorgi; Eun-Soon Im; Erika Coppola; Noah S. Diffenbaugh; Xuejie Gao; Laura Mariotti; Ying Shi

AbstractBecause of their dependence on water, natural and human systems are highly sensitive to changes in the hydrologic cycle. The authors introduce a new measure of hydroclimatic intensity (HY-INT), which integrates metrics of precipitation intensity and dry spell length, viewing the response of these two metrics to global warming as deeply interconnected. Using a suite of global and regional climate model experiments, it is found that increasing HY-INT is a consistent and ubiquitous signature of twenty-first-century, greenhouse gas–induced global warming. Depending on the region, the increase in HY-INT is due to an increase in precipitation intensity, dry spell length, or both. Late twentieth-century observations also exhibit dominant positive HY-INT trends, providing a hydroclimatic signature of late twentieth-century warming. The authors find that increasing HY-INT is physically consistent with the response of both precipitation intensity and dry spell length to global warming. Precipitation intensi...


Bulletin of the American Meteorological Society | 2016

Med-CORDEX initiative for Mediterranean climate studies

Paolo Michele Ruti; Samuel Somot; Filippo Giorgi; Clotilde Dubois; Emmanouil Flaounas; Anika Obermann; A. Dell’aquila; G. Pisacane; Ali Harzallah; E. Lombardi; Bodo Ahrens; Naveed Akhtar; Antoinette Alias; Thomas Arsouze; R. Aznar; Sophie Bastin; Judit Bartholy; Karine Béranger; Jonathan Beuvier; Sophie Bouffies-Cloché; J. Brauch; William Cabos; Sandro Calmanti; Jean-Christophe Calvet; Adriana Carillo; Dario Conte; Erika Coppola; V. Djurdjevic; Philippe Drobinski; A. Elizalde-Arellano

The Mediterranean is expected to be one of the most prominent and vulnerable climate change “hot spots” of the 21st century, and the physical mechanisms underlying this finding are still not clear. Furthermore complex interactions and feedbacks involving ocean-atmosphere-land-biogeochemical processes play a prominent role in modulating the climate and environment of the Mediterranean region on a range of spatial and temporal scales. Therefore it is critical to provide robust climate change information for use in Vulnerability/Impact/Adaptation assessment studies considering the Mediterranean as a fully coupled environmental system. The Med-CORDEX initiative aims at coordinating the Mediterranean climate modeling community towards the development of fully coupled regional climate simulations, improving all relevant components of the system, from atmosphere and ocean dynamics to land surface, hydrology and biogeochemical processes. The primary goals of Med-CORDEX are to improve understanding of past climate variability and trends, and to provide more accurate and reliable future projections, assessing in a quantitative and robust way the added value of using high resolution and coupled regional climate models. The coordination activities and the scientific outcomes of Med-CORDEX can produce an important framework to foster the development of regional earth system models in several key regions worldwide.


Journal of Hydrometeorology | 2003

A Neural Network Approach to Real-Time Rainfall Estimation for Africa Using Satellite Data

D. I. F. Grimes; Erika Coppola; Marco Verdecchia; Guido Visconti

Abstract Operational, real-time rainfall estimation on a daily timescale is potentially of great benefit for hydrological forecasting in African river basins. Sparseness of ground-based observations often means that only methodologies based predominantly on satellite data are feasible. An approach is presented here in which Cold Cloud Duration (CCD) imagery derived from Meteosat thermal infrared imagery is used in conjunction with numerical weather model analysis data as the input to an artificial neural network. Novel features of this approach are the use of principal component analysis to reduce the data requirements for the weather model analyses and the use of a pruning technique to identify redundant input data. The methodology has been tested using 4 yr of daily rain gauge data from Zambia in central Africa. Calibration and validation were carried out using pixel area rainfall estimates derived from daily rain gauge data. When compared with a standard CCD approach using the same dataset, the neural ...


Climatic Change | 2014

Changes in extremes and hydroclimatic regimes in the CREMA ensemble projections

Filippo Giorgi; Erika Coppola; Francesca Raffaele; Gulilat Tefera Diro; Ramón Fuentes-Franco; Graziano Giuliani; Ashu Mamgain; Marta Llopart; Laura Mariotti; Csaba Torma

We analyze changes of four extreme hydroclimatic indices in the RCP8.5 projections of the Phase I CREMA experiment, which includes 21st century projections over 5 CORDEX domains (Africa, Central America, South America, South Asia, Mediterranean) with the ICTP regional model RegCM4 driven by three CMIP5 global models. The indices are: Heat Wave Day Index (HWD), Maximum Consecutive Dry Day index (CDD), fraction of precipitation above the 95th intensity percentile (R95) and Hydroclimatic Intensity index (HY-INT). Comparison with coarse (GPCP) and high (TRMM) resolution daily precipitation data for the present day conditions shows that the precipitation intensity distributions from the GCMs are close to the GPCP data, while the RegCM4 ones are closer to TRMM, illustrating the added value of the increased resolution of the regional model. All global and regional model simulations project predominant increases in HWD, CDD, R95 and HY-INT, implying a regime shift towards more intense, less frequent rain events and increasing risk of heat wave, drought and flood with global warming. However, the magnitudes of the changes are generally larger in the global than the regional models, likely because of the relatively low “climate sensitivity” of the RegCM4, especially when using the CLM land surface scheme. In addition, pronounced regional differences in the change signals are found. The data from these simulations are available for use in impact assessment studies.


Journal of Geophysical Research | 2015

Added value of regional climate modeling over areas characterized by complex terrain—Precipitation over the Alps

Csaba Torma; Filippo Giorgi; Erika Coppola

We present an analysis of the added value (AV) of downscaling via regional climate model (RCM) nesting with respect to the driving global climate models (GCMs). We analyze ensembles of driving GCM and nested RCM (two resolutions, 0.44° and 0.11°) simulations for the late 20th and late 21st centuries from the CMIP5, EURO-CORDEX, and MED-CORDEX experiments, with a focus on the Alpine region. Different metrics of AV are investigated, measuring aspects of precipitation where substantial AV can be expected in mountainous terrains: spatial pattern of mean precipitation, daily precipitation intensity distribution, and daily precipitation extremes tails. Comparison with a high-quality, fine-scale (5 km) gridded observational data set shows substantial AV of RCM downscaling for all metrics selected, and results are mostly improved compared to the driving GCMs also when the RCM fields are upscaled at the scale of the GCM resolution. We also find consistent improvements in the high-resolution (0.11°) versus medium-resolution (0.44°) RCM simulations. Finally, we find that the RCM downscaling substantially modulates the GCM-produced precipitation change signal in future climate projections, particularly in terms of fine-scale spatial pattern associated with the complex topography of the region. Our results thus point to the important role that high-resolution nested RCMs can play in the study of climate change over areas characterized by complex topographical features.


Eos, Transactions American Geophysical Union | 2008

The Regional Climate Change Hyper‐Matrix Framework

Filippo Giorgi; Noah S. Diffenbaugh; Xue J. Gao; Erika Coppola; S. K. Dash; Oscar Frumento; Sara A. Rauscher; Armelle Remedio; Ibrah Seidou Sanda; Allison L. Steiner; Bamba Sylla; Ashraf S. Zakey

The accurate assessment of the potential impacts of climate change on societies and ecosystems requires regional and local-scale climate change information. This assessment is critical for the development of local, national, and international policies to mitigate and adapt to the threat of climate change. Characterizing uncertainties in regional climate change projections (RCCPs) is therefore crucial for making informed decisions based on quantitative risk analysis. However, information about fine-scale climate change and associated uncertainties is lacking due to the absence of a coordinating framework to improve the characterization of such uncertainties. Here we propose the inception of such a framework.


Journal of Hydrometeorology | 2011

Validation of a high-resolution version of the regional climate model RegCM3 over the Carpathian basin

Csaba Torma; Erika Coppola; Filippo Giorgi; Judit Bartholy; Rita Pongrácz

Abstract This paper presents a validation study for a high-resolution version of the Regional Climate Model version 3 (RegCM3) over the Carpathian basin and its surroundings. The horizontal grid spacing of the model is 10 km—the highest reached by RegCM3. The ability of the model to capture temporal and spatial variability of temperature and precipitation over the region of interest is evaluated using metrics spanning a wide range of temporal (daily to climatology) and spatial (inner domain average to local) scales against different observational datasets. The simulated period is 1961–90. RegCM3 shows small temperature biases but a general overestimation of precipitation, especially in winter; although, this overestimate may be artificially enhanced by uncertainties in observations. The precipitation bias over the Hungarian territory, the authors’ main area of interest, is mostly less than 20%. The model captures well the observed late twentieth-century decadal-to-interannual and interseasonal variability...


Journal of Climate | 2010

Validation of a High-Resolution Regional Climate Model for the Alpine Region and Effects of a Subgrid-Scale Topography and Land Use Representation

Eun-Soon Im; Erika Coppola; F. Giorgi; X. Bi

Abstract A mosaic-type parameterization of subgrid-scale topography and land use (SubBATS) is applied for a high-resolution regional climate simulation over the Alpine region with a regional climate model (RegCM3). The model coarse-gridcell size in the control simulation is 15 km while the subgridcell size is 3 km. The parameterization requires disaggregation of atmospheric variables from the coarse grid to the subgrid and aggregation of surface fluxes from the subgrid to the coarse grid. Two 10-yr simulations (1983–92) are intercompared, one without (CONT) and one with (SUB) the subgrid scheme. The authors first validate the CONT simulation, showing that it produces good quality temperature and precipitation statistics, showing in particular a good performance compared to previous runs of this region. The subgrid scheme produces much finer detail of temperature and snow distribution following the topographic disaggregation. It also tends to form and melt snow more accurately in response to the heterogene...


Climatic Change | 2014

Present and future climatologies in the phase I CREMA experiment

Erika Coppola; Filippo Giorgi; Francesca Raffaele; Ramón Fuentes-Franco; Graziano Giuliani; Marta LLopart-Pereira; Ashu Mamgain; Laura Mariotti; Gulilat Tefera Diro; Csaba Torma

We provide an overall assessment of the surface air temperature and precipitation present day (1976–2005) and future (2070–2099) ensemble climatologies in the Phase I CREMA experiment. This consists of simulations performed with different configurations (physics schemes) of the ICTP regional model RegCM4 over five CORDEX domains (Africa, Mediterranean, Central America, South America, South Asia), driven by different combinations of three global climate models (GCMs) and two greenhouse gas (GHG) representative concentration pathways (RCP8.5 and RCP4.5). The biases (1976–2005) in the driving and nested model ensembles compared to observations show a high degree of spatial variability and, when comparing GCMs and RegCM4, similar magnitudes and more similarity for precipitation than for temperature. The large scale patterns of change (2070–2099 minus 1976–2005) are broadly consistent across the GCM and RegCM4 ensembles and with previous analyses of GCM projections, indicating that the GCMs selected in the CREMA experiment are representative of the more general behavior of current GCMs. The RegCM4, however, shows a lower climate sensitivity (reduced warming) than the driving GCMs, especially when using the CLM land surface scheme. While the broad patterns of precipitation change are consistent across the GCM and RegCM4 ensembles, greater differences are found at sub-regional scales over the various domains, evidently tied to the representation of local processes. This paper serves to provide a reference view of the behavior of the CREMA ensemble, while more detailed and process-based analysis of individual domains is left to companion papers of this special issue.


Climatic Change | 2014

Climate change impact on precipitation for the Amazon and La Plata basins

Marta Llopart; Erika Coppola; Filippo Giorgi; Rosmeri Porfírio da Rocha; S. V. Cuadra

We analyze the local and remote impacts of climate change on the hydroclimate of the Amazon and La Plata basins of South America (SA) in an ensemble of four 21st century projections (1970–2100, RCP8.5 scenario) with the regional climate model RegCM4 driven by the HadGEM, GFDL and MPI global climate models (GCMs) over the SA CORDEX domain. Two RegCM4 configurations are used, one employing the CLM land surface and the Emanuel convective schemes, and one using the BATS land surface and Grell (over land) convection schemes. First, we find considerable sensitivity of the precipitation change signal to both the driving GCM and the RegCM4 physics schemes (with the latter even greater than the first), highlighting the pronounced uncertainty of regional projections over the region. However, some improvements in the simulation of the annual cycle of precipitation over the Amazon and La Plata basins is found when using RegCM4, and some consistent change signals across the experiments are found. One is a tendency towards an extension of the dry season over central SA deriving from a late onset and an early retreat of the SA monsoon. The second is a dipolar response consisting of reduced precipitation over the broad Amazon and Central Brazil region and increased precipitation over the La Plata basin and central Argentina. An analysis of the relative influence on the change signal of local soil-moisture feedbacks and remote effects of Sea Surface Temperature (SST) over the Niño 3.4 region indicates that the former is prevalent over the Amazon basin while the latter dominates over the La Plata Basin. Also, the soil moisture feedback has a larger role in RegCM4 than in the GCMs.

Collaboration


Dive into the Erika Coppola's collaboration.

Top Co-Authors

Avatar

Filippo Giorgi

International Centre for Theoretical Physics

View shared research outputs
Top Co-Authors

Avatar

F. Giorgi

International Centre for Theoretical Physics

View shared research outputs
Top Co-Authors

Avatar

Laura Mariotti

International Centre for Theoretical Physics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sara A. Rauscher

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Claudio Piani

International Centre for Theoretical Physics

View shared research outputs
Top Co-Authors

Avatar

Csaba Torma

International Centre for Theoretical Physics

View shared research outputs
Top Co-Authors

Avatar

Graziano Giuliani

International Centre for Theoretical Physics

View shared research outputs
Top Co-Authors

Avatar

Francesca Raffaele

International Centre for Theoretical Physics

View shared research outputs
Top Co-Authors

Avatar

Ramón Fuentes-Franco

International Centre for Theoretical Physics

View shared research outputs
Researchain Logo
Decentralizing Knowledge