Erika Cristina Jorge
Universidade Federal de Minas Gerais
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Erika Cristina Jorge.
Developmental Biology | 2014
Corinne Lours-Calet; Lúcia Elvira Alvares; Amira S. El-Hanfy; Saniel Gandesha; Esther H. Walters; Débora Rodrigues Sobreira; Karl R. Wotton; Erika Cristina Jorge; Jennifer A. Lawson; A. Kelsey Lewis; Masazumi Tada; Colin Sharpe; Gabrielle Kardon; Susanne Dietrich
The vertebrate head–trunk interface (occipital region) has been heavily remodelled during evolution, and its development is still poorly understood. In extant jawed vertebrates, this region provides muscle precursors for the throat and tongue (hypopharyngeal/hypobranchial/hypoglossal muscle precursors, HMP) that take a stereotype path rostrally along the pharynx and are thought to reach their target sites via active migration. Yet, this projection pattern emerged in jawless vertebrates before the evolution of migratory muscle precursors. This suggests that a so far elusive, more basic transport mechanism must have existed and may still be traceable today. Here we show for the first time that all occipital tissues participate in well-conserved cell movements. These cell movements are spearheaded by the occipital lateral mesoderm and ectoderm that split into two streams. The rostrally directed stream projects along the floor of the pharynx and reaches as far rostrally as the floor of the mandibular arch and outflow tract of the heart. Notably, this stream leads and engulfs the later emerging HMP, neural crest cells and hypoglossal nerve. When we (i) attempted to redirect hypobranchial/hypoglossal muscle precursors towards various attractants, (ii) placed non-migratory muscle precursors into the occipital environment or (iii) molecularly or (iv) genetically rendered muscle precursors non-migratory, they still followed the trajectory set by the occipital lateral mesoderm and ectoderm. Thus, we have discovered evolutionarily conserved morphogenetic movements, driven by the occipital lateral mesoderm and ectoderm, that ensure cell transport and organ assembly at the head–trunk interface.
American Journal of Botany | 2012
Eduardo de Andrade Bressan; Danielle Camargo Scotton; Renato Rodrigues Ferreira; Erika Cristina Jorge; A. M. Sebbenn; Lee Tseng Sheng Gerald; Antonio Figueira
PREMISE OF THE STUDY Microsatellite primers were developed for Jatropha curcas (Euphorbiaceae), a tree species with large potential for biofuel production, to investigate its natural genetic diversity and mating system to facilitate the establishment of tree improvement and conservation programs. METHODS AND RESULTS Using a protocol for genomic library enrichment, 104 clones containing 195 repeat motifs were identified. Primer pairs were developed for 40 microsatellite loci and validated in 41 accessions of J. curcas from six provenances. Nine loci were polymorphic revealing from two to eight alleles per locus, and six primers were able to amplify alleles in the congeners J. podagrica, J. pohliana, and J. gossypifolia, but not in other Euphorbiaceae species, such as Hevea brasiliensis, Manihot esculenta, or Ricinus communis. CONCLUSIONS The primers developed here revealed polymorphic loci that are suitable for genetic diversity and structure, mating system, and gene flow studies in J. curcas, and some congeners.
Reproduction | 2014
Paulo Henrique Almeida Campos-Junior; Guilherme Mattos Jardim Costa; Gleide F. Avelar; S. M. S. N. Lacerda; N. N. Costa; O. M. Ohashi; M. S. Miranda; Lucíola S. Barcelos; Erika Cristina Jorge; Diva Anelie Guimarães; Luiz R. França
Because the collared peccary (Tayassu tajacu) has a peculiar Leydig cell cytoarchitecture, this species represents a unique mammalian model for investigating testis function. Taking advantage of the well-established and very useful testis xenograft technique, in the present study, testis tissue and testis cell suspensions from immature collared peccaries (n=4; 3 months old) were xenografted in SCID mice (n=48) and evaluated at 2, 4, 6, and 8 months after grafting. Complete spermatogenesis was observed at 6 and 8 months after testis tissue xenografting. However, probably due to de novo testis morphogenesis and low androgen secretion, functionally evaluated by the seminal vesicle weight, a delay in spermatogenesis progression was observed in the testis cell suspension xenografts, with the production of fertile sperm only at 8 months after grafting. Importantly, demonstrating that the peculiar testicular cytoarchitecture of the collared peccary is intrinsically programmed, the unique Leydig cell arrangement observed in this species was re-established after de novo testis morphogenesis. The sperm collected from the xenografts resulted in diploid embryos that expressed the paternally imprinted gene NNAT after ICSI. The present study is the first to demonstrate complete spermatogenesis with the production of fertile sperm from testis cell suspension xenografts in a wild mammalian species. Therefore, due to its unique testicular cytoarchitecture, xenograft techniques, particularly testis cell suspensions, may represent a new and very promising approach to evaluate testis morphogenesis and to investigate spermatogonial stem cell physiology and niche in the collared peccary.
Frontiers in Aging Neuroscience | 2015
Júlia Meireles Nogueira; Katarzyna Hawrot; Colin Sharpe; Anna Noble; William M. Wood; Erika Cristina Jorge; David J. Goldhamer; Gabrielle Kardon; Susanne Dietrich
Pax7 expressing muscle stem cells accompany all skeletal muscles in the body and in healthy individuals, efficiently repair muscle after injury. Currently, the in vitro manipulation and culture of these cells is still in its infancy, yet muscle stem cells may be the most promising route toward the therapy of muscle diseases such as muscular dystrophies. It is often overlooked that muscular dystrophies affect head and body skeletal muscle differently. Moreover, these muscles develop differently. Specifically, head muscle and its stem cells develop from the non-somitic head mesoderm which also has cardiac competence. To which extent head muscle stem cells retain properties of the early head mesoderm and might even be able to switch between a skeletal muscle and cardiac fate is not known. This is due to the fact that the timing and mechanisms underlying head muscle stem cell development are still obscure. Consequently, it is not clear at which time point one should compare the properties of head mesodermal cells and head muscle stem cells. To shed light on this, we traced the emergence of head muscle stem cells in the key vertebrate models for myogenesis, chicken, mouse, frog and zebrafish, using Pax7 as key marker. Our study reveals a common theme of head muscle stem cell development that is quite different from the trunk. Unlike trunk muscle stem cells, head muscle stem cells do not have a previous history of Pax7 expression, instead Pax7 expression emerges de-novo. The cells develop late, and well after the head mesoderm has committed to myogenesis. We propose that this unique mechanism of muscle stem cell development is a legacy of the evolutionary history of the chordate head mesoderm.
Developmental Biology | 2017
Mohi U. Ahmed; Ashish K. Maurya; Louise Cheng; Erika Cristina Jorge; Frank R. Schubert; Pascal Maire; M. Albert Basson; Philip W. Ingham; Susanne Dietrich
Chordates are characterised by contractile muscle on either side of the body that promotes movement by side-to-side undulation. In the lineage leading to modern jawed vertebrates (crown group gnathostomes), this system was refined: body muscle became segregated into distinct dorsal (epaxial) and ventral (hypaxial) components that are separately innervated by the medial and hypaxial motors column, respectively, via the dorsal and ventral ramus of the spinal nerves. This allows full three-dimensional mobility, which in turn was a key factor in their evolutionary success. How the new gnathostome system is established during embryogenesis and how it may have evolved in the ancestors of modern vertebrates is not known. Vertebrate Engrailed genes have a peculiar expression pattern as they temporarily demarcate a central domain of the developing musculature at the epaxial-hypaxial boundary. Moreover, they are the only genes known with this particular expression pattern. The aim of this study was to investigate whether Engrailed genes control epaxial-hypaxial muscle development and innervation. Investigating chick, mouse and zebrafish as major gnathostome model organisms, we found that the Engrailed expression domain was associated with the establishment of the epaxial-hypaxial boundary of muscle in all three species. Moreover, the outgrowing epaxial and hypaxial nerves orientated themselves with respect to this Engrailed domain. In the chicken, loss and gain of Engrailed function changed epaxial-hypaxial somite patterning. Importantly, in all animals studied, loss and gain of Engrailed function severely disrupted the pathfinding of the spinal motor axons, suggesting that Engrailed plays an evolutionarily conserved role in the separate innervation of vertebrate epaxial-hypaxial muscle.
Developmental Dynamics | 2012
Erika Cristina Jorge; Mohi U. Ahmed; Ingo Bothe; L. L. Coutinho; Susanne Dietrich
Background: Repulsive guidance molecules (RGM) are high‐affinity ligands for the Netrin receptor Neogenin, and they are crucial for nervous system development including neural tube closure; neuronal and neural crest cell differentiation and axon guidance. Recent studies implicated RGM molecules in bone morphogenetic protein signaling, which regulates a variety of developmental processes. Moreover, a role for RGMc in iron metabolism has been established. This suggests that RGM molecules may play important roles in non‐neural tissues. Results: To explore which tissues and processed may be regulated by RGM molecules, we systematically investigated the expression of RGMa and RGMb, the only RGM molecules currently known for avians, in the chicken embryo. Conclusions: Our study suggests so far unknown roles of RGM molecules in notochord, somite and skeletal muscle development. Developmental Dynamics, 2012.
Acta Histochemica | 2017
Íria Gabriela Dias dos Santos; Erika Cristina Jorge; Aline Gonçalves Lio Copola; Bruno Machado Bertassoli; Alfredo M. Goes; Gerluza A.B. Silva
Odontogenesis is guided by a complex signaling cascade in which several molecules, including FGF2-4, ensure all dental groups development and specificity. Most of the data on odontogenesis derives from rodents, which does not have all dental groups. Didelphis albiventris is an opossum with the closest dentition to humans, and the main odontogenesis stages occur when the newborns are in the pouch. In this study, D. albiventris postnatals were used to characterize the main stages of their molars development; and also to establish FGF2, FGF3 and FGF4 expression pattern. D. albiventris postnatals were processed for histological and indirect immunoperoxidase analysis of the tooth germs. Our results revealed similar dental structures between D. albiventris and mice. However, FGF2, FGF3 and FGF4 expression patterns were observed in a larger number of dental structures, suggesting broader functions for these molecules in this opossum species. The knowledge of the signaling that determinates odontogenesis in an animal model with complete dentition may contribute to the development of therapies for the replacement of lost teeth in humans. This study may also contribute to the implementation of D. albiventris as model for Developmental Biology studies.
Brazilian Archives of Biology and Technology | 2016
Bruno Machado Bertassoli; Emanuela Silva Costa; Cristiane Aparecida Sousa; Juliano Douglas Silva Albergaria; Kátia Lucy de Melo Maltos; Alfredo M. Goes; Thais Maria da Mata Matins; Gerluza A.B. Silva; Erika Cristina Jorge
Dental pulp stem cells (DPSC) have been showing a considerable potential for regenerative medicine. Pulps were collected from lower incisors (n=2) through direct access of the tooth pulp chamber. The isolated cells were cultured in alfa-MEM 10% FBS, in standard culture conditions. At the third passage, DPSC were characterized by flow cytometry (MHCI, CD54, CD73, CD90, CD45, CD11 and CD34); RT-PCR for Nanog gene; and their differentiation capacity in osteogenic, adipogenic and chondrogenic cell lines. Isolated cells exhibited adhesion capacity to plastic; fusiform morphology, and 80% confluence reached in approximately 3 days. These cells have also revealed positive expression for CD54, CD73 and CD90 markers; and negative expression for CD11, CD34 and CD45. Nanog expression was detected by RT-PCR, expected for a mesenchymal stem cell profile. DPSC chondrogenic differentiation was confirmed by positive staining in Alcian Blue; lipidic droplets stained with oil red confirmed their capacity to differentiate in adipogenic fate; while mineralized beads, stained with alizarin red, confirmed their differentiation in osteogenic phenotype. These results indicate the viability of the isolation and expansion of rat DPSC following this method, and osteogenic differentiation potential opens new perspectives for in vivo studies and the use of these cells in cellular therapies and tissue bioengineering, aiming bone repair.
Cells Tissues Organs | 2014
Aline Martins; José Xavier Neto; Ana Paula Azambuja; Maria Lorena Sereno; Antonio Figueira; Paulo Henrique Almeida Campos-Junior; Millor Fernandes Rosário; Cristiane Bittencourt Barroso Toledo; Gerluza A.B. Silva; Gregory T. Kitten; Luiz Lehmann Coutinho; Susanne Dietrich; Erika Cristina Jorge
Repulsive guidance molecules (RGMs) compose a family of glycosylphosphatidylinositol (GPI)-anchored axon guidance molecules and perform several functions during neural development. New evidence has suggested possible new roles for these axon guidance molecules during skeletal muscle development, which has not been investigated thus far. In the present study, we show that RGMa, RGMb and RGMc are all induced during skeletal muscle differentiation in vitro. Immunolocalization performed on adult skeletal muscle cells revealed that RGMa, RGMb and RGMc are sarcolemmal proteins. Additionally, RGMa was found to be a sarcoplasmic protein with a surprisingly striated pattern. RGMa colocalization with known sarcoplasmic proteins suggested that this axon guidance molecule is a skeletal muscle sarcoplasmic protein. Western blot analysis revealed two RGMa fragments of 60 and 33 kDa, respectively, in adult skeletal muscle samples. RGMa phenotypes in skeletal muscle cells (C2C12 and primary myoblasts) were also investigated. RGMa overexpression produced hypertrophic cells, whereas RGMa knockdown resulted in the opposite phenotype. RGMa knockdown also blocked myotube formation in both skeletal muscle cell types. Our results are the first to show an axon guidance molecule as a skeletal muscle sarcoplasmic protein and to include RGMa in a system that regulates skeletal muscle cell size and differentiation.
Journal of Bone and Mineral Metabolism | 2018
Gerluza A.B. Silva; Bruno Machado Bertassoli; Cristiane Aparecida Sousa; Juliano Douglas Silva Albergaria; Rayan Silva de Paula; Erika Cristina Jorge