Erika de Carvalho Rodrigues
Federal University of Rio de Janeiro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Erika de Carvalho Rodrigues.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Claudia D. Vargas; Antoine Aballéa; Erika de Carvalho Rodrigues; Karen T. Reilly; Catherine Mercier; Palmina Petruzzo; Jean Michel Dubernard; Angela Sirigu
The human primary motor cortex (M1) undergoes considerable reorganization in response to traumatic upper limb amputation. The representations of the preserved arm muscles expand, invading portions of M1 previously dedicated to the hand, suggesting that former hand neurons are reassigned to the control of remaining proximal upper limb muscles. Hand allograft offers a unique opportunity to study the reversibility of such long-term cortical changes. We used transcranial magnetic stimulation in patient LB, who underwent bilateral hand transplantation 3 years after a traumatic amputation, to longitudinally track both the emergence of intrinsic (from the donor) hand muscles in M1 as well as changes in the representation of stump (upper arm and forearm) muscles. The same muscles were also mapped in patient CD, the first bilateral hand allograft recipient. Newly transplanted intrinsic muscles acquired a cortical representation in LBs M1 at 10 months postgraft for the left hand and at 26 months for the right hand. The appearance of a cortical representation of transplanted hand muscles in M1 coincided with the shrinkage of stump muscle representations for the left but not for the right side. In patient CD, transcranial magnetic stimulation performed at 51 months postgraft revealed a complete set of intrinsic hand-muscle representations for the left but not the right hand. Our findings show that newly transplanted muscles can be recognized and integrated into the patients motor cortex.
Neuroscience Letters | 2006
Luís Aureliano Imbiriba; Erika de Carvalho Rodrigues; José Magalhães; Claudia D. Vargas
Mental simulation of movements has been widely used to infer about representational aspects of action. On a daily basis, motor planning and execution depends crucially both upon vision and kinesthesia. What if the former is lost? In this study we investigate the physiological changes induced during a mental simulation task in subjects with early and late onset blindness, analyzing simultaneously stabilometric (body sway), electromyographic (EMG, lateral gastrocnemius) and eletrocardiographic (ECG) signals. Subjects were asked to stand up on a force platform and instructed either to: rest during 20s; count mentally from 1 to 15; imagine themselves executing a bilateral plantar flexion 15 times and execute the same movement 15 times. Discriminant analysis was employed to have access to the differences in the groups with respect to heart rate variability (HRV), EMG and body sway measurements for each condition. We found an overall correct classification of 100 and 90.9%, respectively, for the stabilometric parameters and HRV. This result was found only for the mental simulation task (p<0.05), being absent for resting, counting and executing. Previous studies have shown that motor simulation in a kinesthetic mode strongly associates with somatic and autonomic changes. In late blind subjects, however, movement simulation would tend to unfold with the use of both visual and kinesthetic representations. Thus, our results suggest that early and late blind subjects make use of distinct body representations during motor imagery.
Clinics | 2011
Míriam Raquel Meira Mainenti; Erika de Carvalho Rodrigues; Juliana Flávia de Oliveira; Arthur de Sá Ferreira; Cristina Márcia Dias; André Silva
OBJECTIVE: The purpose of this study was to investigate the correlation between body adiposity and postural control in elderly women. INTRODUCTION: Aging and obesity account for a significant portion of healthcare spending. Life expectancy is increasing worldwide, and Rio de Janeiro has the largest proportion of elderly residents of all Brazilian states. METHODS: A total of 45 women underwent bioelectrical impedance analysis, waist circumference measurements, weight and height measurements, and stabilometric tests in eight different stance conditions (opened and closed bases with both eyes opened and closed and right and left tandem and unilateral stances with eyes opened). During unilateral stances, the number of hand or foot contacts was counted. RESULTS: Weight, body mass index, waist circumference, fat percentage, and fat mass showed statistically significant (p<0.05) and positive correlations with the number of contacts made during unilateral stances. The subjects with greater fat mass showed significantly higher anterior-posterior standard deviation and range when their eyes were closed. The sway area was also greater for this group in opened base when their eyes were closed. DISCUSSION: The results relating body adiposity and postural control can be explained by the difficulty of maintaining a greater quantity of body fat mass within the limits of the individual support base, especially while assuming a unilateral stance. CONCLUSION: The subjects with a greater fat mass exhibited poor balance control, indicating that body adiposity level was associated with postural control in the elderly women examined in the present study.
Revista Brasileira de Psiquiatria | 2003
Erika de Carvalho Rodrigues; Luís Aureliano Imbiriba; Gabriela Rego Leite; José Magalhães; Eliane Volchan; Claudia D. Vargas
Recent studies have proposed that the mental rotation of body parts can be accomplished by calling upon visual and somatomotor resources which, at a functional level, would correspond to different routes toward a single solution [1]. In this study, we investigated the effect of somato-motor and visual strategies upon the mental simulation of a task that involved postural adjustments. Subjects were asked to stand up on a vertical force platform and instructed either to 1) rest during 20 s (ST), 2) count mentally from 1 to 15 (CO), 3) imagine themselves executing a bilateral plantar flexion 15 times (IM), and 4) execute the same movement 15 times (EX). They were further classified as visual or somato-motor dominant, according to the strategy reported as adopted to perform IM. Mental chronometry showed that mean time spent in IM matched that of EX, differing from CO for both groups. Index of stabilometric modulation during IM was computed by reference to CO. Higher index values for area and amplitude of displacement in the antero posterior (y) axis were found for the somato-motor as compared to the visual group. The stabilometric departure found for visual and somato-motor dominant subjects suggests that each imagery mode activates a distinct subset of cortical and subcortical brain networks.
PLOS ONE | 2012
Laura Alice Santos de Oliveira; Luís Aureliano Imbiriba; Maitê Mello Russo; Anaelli A. Nogueira-Campos; Erika de Carvalho Rodrigues; Mirtes G. Pereira; Eliane Volchan; Claudia D. Vargas
Background Contemporary theories of motor control propose that motor planning involves the prediction of the consequences of actions. These predictions include the associated costs as well as the rewarding nature of movements’ outcomes. Within the estimation of these costs and rewards would lie the valence, that is, the pleasantness or unpleasantness of a given stimulus with which one is about to interact. The aim of this study was to test if motor preparation encompasses valence. Methodology/Principal Findings The readiness potential, an electrophysiological marker of motor preparation, was recorded before the grasping of pleasant, neutral and unpleasant stimuli. Items used were balanced in weight and placed inside transparent cylinders to prompt a similar grip among trials. Compared with neutral stimuli, the grasping of pleasant stimuli was preceded by a readiness potential of lower amplitude, whereas that of unpleasant stimuli was associated with a readiness potential of higher amplitude. Conclusions/Significance We show for the first time that the sensorimotor cortex activity preceding the grasping of a stimulus is affected by its valence. Smaller readiness potential amplitudes found for pleasant stimuli could imply in the recruitment of pre-set motor repertoires, whereas higher amplitudes found for unpleasant stimuli would emerge from a discrepancy between the required action and their aversiveness. Our results indicate that the prediction of action outcomes encompasses an estimate of the valence of a stimulus with which one is about to interact.
PLOS ONE | 2014
Anaelli A. Nogueira-Campos; Laura Alice Santos de Oliveira; Valeria Della-Maggiore; Paula Oliveira Esteves; Erika de Carvalho Rodrigues; Claudia D. Vargas
Evolutionary theories posit that emotions prime organisms for action. This study examined whether corticospinal excitability (CSE) is modulated by the emotional valence of a to-be-grasped stimulus. CSE was estimated based on the amplitude of motor evoked potentials (MEPs) elicited using transcranial magnetic stimulation (TMS) and recorded on the first dorsal interosseous (FDI) muscle. Participants were instructed to grasp (ACTION condition) or just look at (NO-ACTION condition) unpleasant, pleasant and neutral stimuli. TMS pulses were applied randomly at 500 or 250 ms before a go signal. MEP amplitudes were normalized within condition by computing a ratio for the emotion-laden stimuli by reference to the neutral stimuli. A divergent valence effect was observed in the ACTION condition, where the CSE ratio was higher during the preparation to grasp unpleasant compared to pleasant stimuli. In addition, the CSE ratio was lower for pleasant stimuli during the ACTION condition compared to the NO-ACTION condition. Altogether, these results indicate that motor preparation is selectively modulated by the valence of the stimulus to be grasped. The lower CSE for pleasant stimuli may result from the need to refrain from executing an imminent action.
Acta Ortopedica Brasileira | 2014
Wagner Teixeira dos Santos; Erika de Carvalho Rodrigues; Míriam Raquel Meira Mainenti
Objective: To correlate muscule performance, body composition, pain and joint function in elderly people with gonarthrosis. Method: 21 elderly patients were submitted to bioelectrical impedance analysis, dynamometry associated with electromyographic (EMG) evaluation of isometric knee extension, in addition to pain assessment by the Numeric Pain Intensity Scale and function assessment, by the Western Ontario and McMaster Universities (WOMAC) Osteoarthritis (OA) questionnaire. Correlations were checked by the Pearsons correlation coefficient. Results: The sample characteristics were mean age 67.36 ± 4.21 years old, body fat percentage 40.57±6.15%, total WOMAC score 43.27 ± 16.32%, and maximum strength 19.95 ± 6.99 kgF. Pain during movement showed a statistical association with WOMAC physical activity domain (r = 0.47) and its general score (r = 0.51); pain intensity at night presented association with WOMAC stiffness domain (r = 0.55), in addition to the negative correlation with the slope values of the Medium Frequency of the EMG signal (r = - 0.57). Conclusion: pain intensity is correlated to functional incapacity in elderly people with knee OA and to a greater expression of fatigue in EMG signal. Levels of Evidence III, Study of non consecutive patients
Neuroscience Letters | 2014
Thiago Lemos; Erika de Carvalho Rodrigues; Claudia D. Vargas
Motor imagery (MI) performed in an upright stance promotes increases in postural sway without changes in usual amplitude measures of calf muscle EMG. However, postural muscle activity can also be determined from the temporal association between EMG and center of pressure (COP) displacements. In this study we investigated whether the MI modulation of postural sway is accompanied by changes in EMG-COP association. Surface EMG from the lateral gastrocnemius (LG) muscle and COP coordinates were collected from 12 subjects while they imagined themselves performing a rising on tiptoes movement via kinesthetic or visual imagery. As a control condition subjects were requested to imagine singing a song. The standard deviation of the forward-backward COP sway and the coefficient of variation of the EMG were calculated and compared across tasks. The degree of association between COP sways and LG activity was evaluated through a cross-correlation function. Kinesthetic imagery promoted a larger COP displacement than both visual and control imagery (p<0.02). No difference in EMG amplitude was observed across imagery tasks (p=0.08). Crucially, we found a stronger EMG-COP association during kinesthetic imagery compared to control imagery (p=0.02), whereas the EMG-COP association in visual imagery was not different from that observed during kinesthetic or control imagery (p>0.19). In conclusion, kinesthetic imagery resulted in a higher EMG-COP temporal association. Subliminal fringe mechanisms may account for the imagery effects on muscle activity and postural sway during upright stance.
Journal of Physical Therapy Science | 2014
Míriam Raquel Meira Mainenti; Lilian Ramiro Felicio; Erika de Carvalho Rodrigues; Dalila Terrinha Ribeiro da Silva; Patrícia Vigário dos Santos
[Purpose] Complaint of pain is common in computer workers, encouraging the investigation of pain-related workplace factors. This study investigated the relationship among work-related characteristics, psychosocial factors, and pain among computer workers from a university center. [Subjects and Methods] Fifteen subjects (median age, 32.0 years; interquartile range, 26.8–34.5 years) were subjected to measurement of bioelectrical impedance; photogrammetry; workplace measurements; and pain complaint, quality of life, and motivation questionnaires. [Results] The low back was the most prevalent region of complaint (76.9%). The number of body regions for which subjects complained of pain was greater in the no rest breaks group, which also presented higher prevalences of neck (62.5%) and low back (100%) pain. There were also observed associations between neck complaint and quality of life; neck complaint and head protrusion; wrist complaint and shoulder angle; and use of a chair back and thoracic pain. [Conclusion] Complaint of pain was associated with no short rest breaks, no use of a chair back, poor quality of life, high head protrusion, and shoulder angle while using the mouse of a computer.
Frontiers in Human Neuroscience | 2016
Anaelli A. Nogueira-Campos; Ghislain Saunier; Valeria Della-Maggiore; Laura Alice Santos de Oliveira; Erika de Carvalho Rodrigues; Claudia D. Vargas
The motor system is recruited whenever one executes an action as well as when one observes the same action being executed by others. Although it is well established that emotion modulates the motor system, the effect of observing other individuals acting in an emotional context is particularly elusive. The main aim of this study was to investigate the effect induced by the observation of grasping directed to emotion-laden objects upon corticospinal excitability (CSE). Participants classified video-clips depicting the right-hand of an actor grasping emotion-laden objects. Twenty video-clips differing in terms of valence but balanced in arousal level were selected. Motor evoked potentials (MEPs) were then recorded from the first dorsal interosseous using transcranial magnetic stimulation (TMS) while the participants observed the selected emotional video-clips. During the video-clip presentation, TMS pulses were randomly applied at one of two different time points of grasping: (1) maximum grip aperture, and (2) object contact time. CSE was higher during the observation of grasping directed to unpleasant objects compared to pleasant ones. These results indicate that when someone observes an action of grasping directed to emotion-laden objects, the effect of the object valence promotes a specific modulation over the motor system.