Erika L. Kubisch
National Scientific and Technical Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Erika L. Kubisch.
Journal of Experimental Zoology | 2014
Facundo Cabezas-Cartes; Erika L. Kubisch; Nora R. Ibargüengoytía
The locomotor performance of lizards depends on their morphological and physiological adaptations to the habitat. However, when the habitat changes dramatically, for example, by a volcanic eruption, the performance of lizards may be affected. We registered the vegetation cover, the surface covered by ash, the presence of crevices suitable for Phymaturus and the rocks slopes to analyze the effects of ash accumulation produced by the eruption of Puyehue-Cordon Caulle volcanic complex on microhabitat use and availability of the Phymaturus spectabilis lizard. In addition, we studied the effect of ashes and slope on the locomotor performance of P. spectabilis by registering the maximum speed in sprint runs and long runs under four different treatments (cork and on the level, ashes and on the level, cork and slope, and ashes and slope). P. spectabilis selected microhabitats unvegetated, with crevices and steep slopes. Regarding locomotor performance, the speed of lizards was negatively affected by the presence of ash only in sprint runs on the level and in long runs with slope. The slope had a negative impact on the speed in all the treatments. These results show that the presence of volcanic ashes in the substrate might have affected the locomotor performance of the lizards, especially in long runs, and hence, the interaction of individuals with the environment, that is, escaping from predators and social behavior.
Journal of Herpetology | 2012
Erika L. Kubisch; Carla Piantoni; Jorge D. Williams; Alejandro Scolaro; Carlos A. Navas; Nora R. Ibargüengoytía
Abstract Recent studies predict that several lineages of tropical animals are at particular risk given current estimates of global climate change. Yet, much uncertainty exists on the effects of climate shifts in ectothermic species from cool temperate regions such as Patagonia. In this study, we focus on the impact of environmental temperature on growth, age at sexual maturity, and life-span of the Patagonian gecko Homonota darwini. Skeletochronological methods were used to assess the bone growth rates of individuals from three populations at different geographic and temporal scales: two populations from Chubut (warm site; 1941 and 2010) and one population from Río Negro (cold site; 1997–1998). Populations displayed similar bone arrangement and the growth patterns fit a von Bertalanffy curve. Three populations attained reproductive size at a minimum age of 3 yr, but at the cold site two specimens were shown to mature in 4 yr. We found no differences in juvenile growth rates in body size or bone zone width between juveniles of 1 to 3 yr of age from the 1941 warm site and the 2010 warm site. However, these traits appeared to be higher at these two warm sites than at the cold site, which is consistent with the climatic differences among the three localities. Our results suggest that higher temperatures positively affect growth, denoting that global warming might benefit H. darwini, especially the southern populations.
Journal of Comparative Physiology B-biochemical Systemic and Environmental Physiology | 2018
F. Duran; Erika L. Kubisch; Jorgelina M. Boretto
The thermal physiology determines the whole biology of ectotherm organisms, by limiting their acquisition and allocation of resources. Herein, we aim to add knowledge on how different species use the thermal resources when they coexist in a habitat, studying the thermal physiology of three sympatric and syntopic liolaemid lizards, Phymaturus querque, Phymaturus zapalensis, and Liolaemus elongatus during the summer season. We measured the body temperatures at capture places, the operative microenvironmental temperatures in the field, and the preferred body temperature in an experimental thermal gradient in the laboratory. We found that the three species are thermoregulators, selecting cooler thermal microenvironments than the ones expected by chance, and even cooler than the temperatures they selected in a laboratory environment. Liolaemus elongatus is a more efficient thermoregulator (E = 0.671) than the two Phymaturus species, P. querque (E = 0.441) and P. zapalensis (E = 0.471), which are moderate thermoregulators and, apparently, specialists in finding specific types of shelters, since they seem to select certain types of rock crevices. Herein, we found that during the summer season, although individuals have access to warm microenvironments, they spend time on cool refuges, probably to prevent overheating. This highlights the importance of an adequate spatial distribution of operative temperatures (Te), more than just a mere availability of appropriate temperatures.
Integrative Zoology | 2017
Jimena B. Fernández; Marlin Medina; Erika L. Kubisch; José Alejandro Scolaro; Nora R. Ibargüengoytía
Reproductive and life history patterns in reptiles are tightly related to the environmental conditions, so male reproductive cycles have been historically characterized as continuous, for tropical lizards, or seasonal, for temperate lizards. However, males of Liolaemus and Phymaturus lizards (Liolaemidae), from cold temperate climates of high altitudes or latitudes in Argentina and Chile, have developed a variety of reproductive cycles to coordinate with the short female reproductive season and to deal with the low frequency of reproductive females in the population. Using gonadal histology and morphological analysis, we describe the male reproductive biology, fat storage and sexual dimorphism of the viviparous lizards Liolaemus sarmientoi and Liolaemus magellanicus that inhabit an austral grass steppe at 51°S, in the southern limit of the American continent. Males of L. sarmientoi and L. magellanicus are reproductively available during the entire activity season of approximately 5 months. In addition, males of both species exhibit greater body sizes than females in morphological variables relevant in sexual selection. Meanwhile, females of both species exhibit larger inter-limb length than conspecific males, which suggests fecundity selection to increase space for a larger litter size. The continuous sperm production throughout the activity season allows these liolaemids to mate at any time when females ovulate, representing a selective advantage to deal with the short activity season and the adversities of the cold environment they inhabit.
Evolutionary Biology-new York | 2017
Jimena B. Fernández; Erika L. Kubisch; Nora R. Ibargüengoytía
Two hypotheses have prevailed to explain the evolution of viviparity in reptiles: the first proposed that viviparity evolved in response to cold-climates because the possibility of pregnant females to thermoregulate at higher temperatures than embryos could experience in a nest in nature. The second hypothesis posits that the advantage of viviparity is based on the possibility of females to maintain stable body temperatures during development, enhancing offspring fitness. With the aim to contribute to understanding the origins of viviparity in reptiles, we experimentally subjected pregnant females of the austral lizard Liolaemus sarmientoi to two temperature treatments until parturition: one that simulated environmental temperatures for a potential nest (17–25 °C) and another that allowed females to thermoregulate at their preferred body temperature (17–45 °C). Then, we analysed newborn body conditions and their locomotor performance to estimate their fitness. In addition, we measured the body temperature in the field and the preferred temperature in the laboratory of pregnant and non-pregnant females. Pregnant females thermoregulated to achieve higher temperatures than the environmental temperatures, and also thermoregulated within a narrower range than non-pregnant females. This could have allowed embryos to develop in higher and more stable temperatures than they would experience in a nest in nature. Thus, offspring developed at the female preferred temperature showed greater fitness and were born earlier in the season than those developed at lower environmental temperatures. Herein, we show that results are in agreement with the two hypotheses of the origin of viviparity for one of the southernmost lizards of the world.
Canadian Journal of Zoology | 2016
Erika L. Kubisch; Valeria Corbalán; Nora R. Ibargüengoytía; Barry Sinervo
Journal of Thermal Biology | 2013
Valeria Corbalán; Guillermo Debandi; Erika L. Kubisch
Journal of Thermal Biology | 2011
Erika L. Kubisch; Jimena B. Fernández; Nora R. Ibargüengoytía
Journal of Comparative Physiology B-biochemical Systemic and Environmental Physiology | 2016
Erika L. Kubisch; Jimena B. Fernández; Nora R. Ibargüengoytía
Herpetological Journal | 2015
Jimena B. Fernández; Marlin Medina; Erika L. Kubisch; Amanda A. Manero; J. Alejandro Scolaro; Nora R. Ibargüengoytía