Erika M. Kwon
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Erika M. Kwon.
BMC Cancer | 2008
Liesel M. FitzGerald; Ilir Agalliu; Karynn Johnson; Melinda A. Miller; Erika M. Kwon; Antonio Hurtado-Coll; Ladan Fazli; Ashish Rajput; Martin Gleave; Michael E. Cox; Elaine A. Ostrander; Janet L. Stanford; David Huntsman
BackgroundThe presence of the TMPRSS2-ERG fusion gene in prostate tumors has recently been associated with an aggressive phenotype, as well as recurrence and death from prostate cancer. These associations suggest the hypothesis that the gene fusion may be used as a prognostic indicator for prostate cancer.MethodsIn this study, fluorescent in situ hybridization (FISH) assays were used to assess TMPRSS2-ERG fusion status in a group of 214 prostate cancer cases from two population-based studies. The FISH assays were designed to detect both fusion type (deletion vs. translocation) and the number of fusion copies (single vs. multiple). Genotyping of four ERG and one TMPRSS2 SNPs using germline DNA was also performed in a sample of the cases (n = 127).ResultsOf the 214 tumors scored for the TMPRSS2-ERG fusion, 64.5% were negative and 35.5% were positive for the fusion. Cases with the TMPRSS2-ERG fusion did not exhibit reduced prostate cancer survival (HR = 0.92, 95% CI = 0.22–3.93), nor was there a significant difference in cause-specific survival when stratifying by translocation or deletion (HR = 0.84, 95% CI = 0.23–3.12) or by the number of retained fusion copies (HR = 1.22, 95% CI = 0.45–3.34). However, evidence for reduced prostate cancer-specific survival was apparent in those cases whose tumor had multiple copies of the fusion. The variant T allele of the TMPRSS2 SNP, rs12329760, was positively associated with TMPRSS2-ERG fusion by translocation (p = 0.05) and with multiple copies of the gene fusion (p = 0.03).ConclusionIf replicated, the results presented here may provide insight into the mechanism by which the TMPRSS2-ERG gene fusion arises and also contribute to diagnostic evaluations for determining the subset of men who will go on to develop metastatic prostate cancer.
Cancer Epidemiology, Biomarkers & Prevention | 2011
Jonathan L. Wright; Erika M. Kwon; Elaine A. Ostrander; R. Bruce Montgomery; Daniel W. Lin; Robert L. Vessella; Janet L. Stanford; Elahe A. Mostaghel
Background: Metastases from men with castration-resistant prostate cancer (CRPC) harbor increased tumoral androgens versus untreated prostate cancers. This may reflect steroid uptake by OATP (organic anion transporting polypeptide)/SLCO transporters. We evaluated SLCO gene expression in CRPC metastases and determined whether prostate cancer outcomes are associated with single nucleotide polymorphisms (SNP) in SLCO2B1 and SLCO1B3, transporters previously shown to mediate androgen uptake. Methods: Transcripts encoding eleven SLCO genes were analyzed in untreated prostate cancer and in metastatic CRPC tumors obtained by rapid autopsy. SNPs in SLCO2B1 and SLCO1B3 were genotyped in a population-based cohort of 1,309 Caucasian prostate cancer patients. Median survival follow-up was 7.0 years (0.77–16.4). The risk of prostate cancer recurrence/progression and prostate cancer–specific mortality (PCSM) was estimated with Cox proportional hazards analysis. Results: Six SLCO genes were highly expressed in CRPC metastases versus untreated prostate cancer, including SLCO1B3 (3.6-fold; P = 0.0517) and SLCO2B1 (5.5-fold; P = 0.0034). Carriers of the variant alleles SLCO2B1 SNP rs12422149 (HR: 1.99; 95% CI: 1.11–3.55) or SLCO1B3 SNP rs4149117 (HR: 1.76; 95% CI: 1.00–3.08) had an increased risk of PCSM. Conclusions: CRPC metastases show increased expression of SLCO genes versus primary prostate cancer. Genetic variants of SLCO1B3 and SLCO2B1 are associated with PCSM. Expression and genetic variation of SLCO genes which alter androgen uptake may be important in prostate cancer outcomes. Impact: OATP/SLCO genes may be potential biomarkers for assessing risk of PCSM. Expression and genetic variation in these genes may allow stratification of patients to more aggressive hormonal therapy or earlier incorporation of nonhormonal-based treatment strategies. Cancer Epidemiol Biomarkers Prev; 20(4); 619–27. ©2011 AACR.
Cancer Research | 2009
Yong Zhu; Richard G. Stevens; Aaron E. Hoffman; Liesel M. FitzGerald; Erika M. Kwon; Elaine A. Ostrander; Scott Davis; Tongzhang Zheng; Janet L. Stanford
Circadian genes are responsible for maintaining the ancient adaptation of a 24-hour circadian rhythm and influence a variety of cancer-related biological pathways, including the regulation of sex hormone levels. However, few studies have been undertaken to investigate the role of circadian genes in the development of prostate cancer, the most common cancer type among men (excluding nonmelanoma skin cancer). The current genetic association study tested the circadian gene hypothesis in relation to prostate cancer by genotyping a total of 41 tagging and amino acid-altering single nucleotide polymorphisms (SNP) in 10 circadian-related genes in a population-based case-control study of Caucasian men (n = 1,308 cases and 1,266 controls). Our results showed that at least one SNP in nine core circadian genes (rs885747 and rs2289591 in PER1; rs7602358 in PER2; rs1012477 in PER3; rs1534891 in CSNK1E; rs12315175 in CRY1; rs2292912 in CRY2; rs7950226 in ARNTL; rs11133373 in CLOCK; and rs1369481, rs895521, and rs17024926 in NPAS2) was significantly associated with susceptibility to prostate cancer (either overall risk or risk of aggressive disease), and the risk estimate for four SNPs in three genes (rs885747 and rs2289591 in PER1, rs1012477 in PER3, and rs11133373 in CLOCK) varied by disease aggressiveness. Further analyses of haplotypes were consistent with these genotyping results. Findings from this candidate gene association study support the hypothesis of a link between genetic variants in circadian genes and prostate cancer risk, warranting further confirmation and mechanistic investigation of circadian biomarkers in prostate tumorigenesis.
Cancer Epidemiology, Biomarkers & Prevention | 2007
Crystal N. Holick; Janet L. Stanford; Erika M. Kwon; Elaine A. Ostrander; Sergey Nejentsev; Ulrike Peters
Genetic variation in vitamin D–related genes has not been investigated comprehensively and findings are equivocal. We studied the association between polymorphisms across the entire vitamin D receptor (VDR) gene and genes encoding for vitamin D activating enzyme 1-α-hydroxylase (CYP27B1) and deactivating enzyme 24-hyroxylase (CYP24A1) and prostate cancer risk among middle-aged men using a population-based case-control study design. DNA samples and survey data were obtained from incident cases (n = 630), 40 to 64 years old, identified through the Seattle-Puget Sound Surveillance, Epidemiology, and End Results cancer registry from 1993 to 1996 and from random controls (n = 565) of similar age without a history of prostate cancer. We selected and genotyped tag single-nucleotide polymorphisms to predict common variants across VDR (n = 22), CYP27B1 (n = 2), and CYP24A1 (n = 14). Haplotypes of VDR and CYP24A1 were not associated with prostate cancer risk. In the genotype analysis, homozygotes at two VDR loci (rs2107301 and rs2238135) were associated with a 2- to 2.5-fold higher risk of prostate cancer compared with the homozygote common allele [odds ratio, 2.47 (95% confidence interval, 1.52-4.00; P = 0.002) and 1.95 (95% confidence interval, 1.17-3.26; P = 0.007), respectively; P value corrected for multiple comparisons for VDR = 0.002]. We found no evidence that the two associated VDR single-nucleotide polymorphisms were modified by age at diagnosis, prostate cancer aggressiveness, first-degree family history of prostate cancer, or vitamin D intake. Genotypes of CYP27B1 and CYP24A1 were not associated with prostate cancer risk. Our findings suggest that polymorphisms in the VDR gene may be associated with prostate cancer risk and, therefore, that the vitamin D pathway might have an etiologic role in the development of prostate cancer. (Cancer Epidemiol Biomarkers Prev 2007;16(10):1990–9)
The Prostate | 2009
Claudia A. Salinas; Joseph S. Koopmeiners; Erika M. Kwon; Liesel M. FitzGerald; Daniel W. Lin; Elaine A. Ostrander; Ziding Feng; Janet L. Stanford
A recent report suggests that the combination of five single‐nucleotide polymorphisms (SNPs) at 8q24, 17q12, 17q24.3 and a family history of the disease may predict risk of prostate cancer. The present study tests the performance of these factors in prediction models for prostate cancer risk and prostate cancer‐specific mortality.
Cancer Causes & Control | 2010
Ilir Agalliu; Erika M. Kwon; Claudia A. Salinas; Joseph S. Koopmeiners; Elaine A. Ostrander; Janet L. Stanford
ObjectiveDNA repair pathways are crucial to prevent accumulation of DNA damage and maintain genomic stability. Alterations of this pathway have been reported in many cancers. An increase in oxidative DNA damage or decrease in DNA repair capacity with aging or due to germline genetic variation may affect prostate cancer risk.MethodsPooled data from two population-based studies (1,457 cases and 1,351 controls) were analyzed to examine associations between 28 single-nucleotide polymorphisms (SNPs) in nine DNA repair genes (APEX1, BRCA2, ERCC2, ERCC4, MGMT, MUTYH, OGG1, XPC, and XRCC1) and prostate cancer risk. We also explored whether associations varied by smoking, by family history or clinical features of prostate cancer.ResultsThere were no associations between these SNPs and overall risk of prostate cancer. Risks by genotype also did not vary by smoking or by family history of prostate cancer. Although two SNPs in BRCA2 (rs144848, rs1801406) and two SNPs in ERCC2 (rs1799793, rs13181) showed stronger associations with high Gleason score or advanced-stage tumors when comparing homozygous men carrying the minor versus major allele, results were not statistically significantly different between clinically aggressive and non-aggressive tumors.ConclusionOverall, this study found no associations between prostate cancer and the SNPs in DNA repair genes. Given the complexity of this pathway and its crucial role in maintenance of genomic stability, a pathway-based analysis of all 150 genes in DNA repair pathways, as well as exploration of gene–environment interactions may be warranted.
British Journal of Cancer | 2007
Ilir Agalliu; Eric Karlins; Erika M. Kwon; Lori Iwasaki; A Diamond; Elaine A. Ostrander; Janet L. Stanford
Studies of families who segregate BRCA2 mutations have found that men who carry disease-associated mutations have an increased risk of prostate cancer, particularly early-onset disease. A study of sporadic prostate cancer in the UK reported a prevalence of 2.3% for protein-truncating BRCA2 mutations among patients diagnosed at ages ⩽55 years, highlighting the potential importance of this gene in prostate cancer susceptibility. To examine the role of protein-truncating BRCA2 mutations in relation to early-onset prostate cancer in a US population, 290 population-based patients from King County, Washington, diagnosed at ages <55 years were screened for germline BRCA2 mutations. The coding regions, intron–exon boundaries, and potential regulatory elements of the BRCA2 gene were sequenced. Two distinct protein-truncating BRCA2 mutations were identified in exon 11 in two patients. Both cases were Caucasian, yielding a mutation prevalence of 0.78% (95% confidence interval (95%CI) 0.09–2.81%) and a relative risk (RR) of 7.8 (95%CI 1.8–9.4) for early-onset prostate cancer in white men carrying a protein-truncating BRCA2 mutation. Results suggest that protein-truncating BRCA2 mutations confer an elevated RR of early-onset prostate cancer. However, we estimate that <1% of early-onset prostate cancers in the general US Caucasian population can be attributed to these rare disease-associated BRCA2 mutations.
American Journal of Epidemiology | 2010
Claudia A. Salinas; Erika M. Kwon; Liesel M. FitzGerald; Ziding Feng; Peter S. Nelson; Elaine A. Ostrander; Ulrike Peters; Janet L. Stanford
Recent interest has focused on the role that inflammation may play in the development of prostate cancer and whether use of aspirin or other nonsteroidal antiinflammatory drugs (NSAIDs) affects risk. In a population-based case-control study designed to investigate the relation between these medications and prostate cancer risk, detailed exposure data were analyzed from 1,001 cases diagnosed with prostate cancer between January 1, 2002, and December 31, 2005, and 942 age-matched controls from King County, Washington. A significant 21% reduction in the risk of prostate cancer was observed among current users of aspirin compared with nonusers (95% confidence interval (CI): 0.65, 0.96). Long-term use of aspirin (>5 years: odds ratio = 0.76, 95% CI: 0.61, 0.96) and daily use of low-dose aspirin (odds ratio = 0.71, 95% CI: 0.56, 0.90) were also associated with decreased risk. There was no evidence that the association with aspirin use varied by disease aggressiveness, but there was effect modification (P(interaction) = 0.02) with a genetic variant in prostaglandin-endoperoxide synthase 2 (PTGS2) (rs12042763). Prostate cancer risk was not related to use of either nonaspirin NSAIDs or acetaminophen. These results contribute further evidence that aspirin may have chemopreventive activity against prostate cancer and highlight the need for additional research.
The Prostate | 2010
Sarah K. Holt; Erika M. Kwon; Joseph S. Koopmeiners; Daniel W. Lin; Ziding Feng; Elaine A. Ostrander; Ulrike Peters; Janet L. Stanford
Observational studies linking vitamin D deficiency with increased prostate cancer (PCa) mortality and the pleiotropic anticancer effects of vitamin D in malignant prostate cell lines have initiated trials examining potential therapeutic benefits of vitamin D metabolites. There have been some successes but efforts have been hindered by risk of inducing hypercalcemia. A limited number of studies have investigated associations between variants in vitamin D pathway genes with aggressive forms of PCa. Increased understanding of relevant germline genetic variation with disease outcome could aid in the development of vitamin‐D‐based therapies.
Clinical Cancer Research | 2009
Liesel M. FitzGerald; Erika M. Kwon; Joseph S. Koopmeiners; Claudia A. Salinas; Janet L. Stanford; Elaine A. Ostrander
Purpose: Two recent genome-wide association studies have highlighted several single nucleotide polymorphisms (SNPs) purported to be associated with prostate cancer risk. We investigated the significance of these SNPs in a population-based study of Caucasian men, testing the effects of each SNP in relation to family history of prostate cancer and the clinicopathologic features of the disease. Experimental Design: We genotyped 13 SNPs in 1,308 prostate cancer patients and 1,267 unaffected controls frequency matched to cases by five-year age groups. The association of each SNP with disease risk stratified by family history of prostate cancer and clinicopathologic features of the disease was calculated with the use of logistic and polytomous regression. Results: These results confirm the importance of multiple, previously reported SNPs in relation to prostate cancer susceptibility; 11 of the 13 SNPs were significantly associated with risk of developing prostate cancer. However, none of the SNP associations were of comparable magnitude with that associated with having a first-degree family history of the disease. Risk estimates associated with SNPs rs4242382 and rs2735839 varied by family history, whereas risk estimates for rs10993994 and rs5945619 varied by Gleason score. Conclusions: Our results confirm that several recently identified SNPs are associated with prostate cancer risk; however, the variant alleles only confer a low to moderate relative risk of disease and are generally not associated with more aggressive disease features.