Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erika Polgár is active.

Publication


Featured researches published by Erika Polgár.


European Journal of Neuroscience | 2003

The expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in neurochemically defined axonal populations in the rat spinal cord with emphasis on the dorsal horn

Andrew J. Todd; David I. Hughes; Erika Polgár; Gergely G. Nagy; M. Mackie; O.P. Ottersen; D.J. Maxwell

Two vesicular glutamate transporters, VGLUT1 and VGLUT2, have recently been identified, and it has been reported that they are expressed by largely nonoverlapping populations of glutamatergic neurons in the brain. We have used immunocytochemistry with antibodies against both transporters, together with markers for various populations of spinal neurons, in an attempt to identify glutamatergic interneurons in the dorsal horn of the mid‐lumbar spinal cord of the rat. The great majority (94–100%) of nonprimary axonal boutons that contained somatostatin, substance P or neurotensin, as well as 85% of those that contained enkephalin, were VGLUT2‐immunoreactive, which suggests that most dorsal horn neurons that synthesize these peptides are glutamatergic. In support of this, we found that most somatostatin‐ and enkephalin‐containing boutons (including somatostatin‐immunoreactive boutons that lacked calcitonin gene‐related peptide and were therefore probably derived from local interneurons) formed synapses at which AMPA receptors were present.


Pain | 2003

Selective loss of spinal GABAergic or glycinergic neurons is not necessary for development of thermal hyperalgesia in the chronic constriction injury model of neuropathic pain.

Erika Polgár; David I. Hughes; John S. Riddell; D.J. Maxwell; Zita Puskár; Andrew J. Todd

&NA; GABA and glycine are inhibitory neurotransmitters used by many neurons in the spinal dorsal horn, and intrathecal administration of GABAA and glycine receptor antagonists produces behavioural signs of allodynia, suggesting that these transmitters have an important role in spinal pain mechanisms. Several studies have described a substantial loss of GABA‐immunoreactive neurons from the dorsal horn in nerve injury models, and it has been suggested that this may be associated with a loss of inhibition, which contributes to the behavioural signs of neuropathic pain. We have carried out a quantitative stereological analysis of the proportions of neurons in laminae I, II and III of the rat dorsal horn that show GABA‐ and/or glycine‐immunoreactivity 2 weeks after nerve ligation in the chronic constriction injury (CCI) model, as well as in sham‐operated and naïve animals. At this time, rats that had undergone CCI showed a significant reduction in the latency of withdrawal of the ipsilateral hindpaw to a radiant heat stimulus, suggesting that thermal hyperalgesia had developed. However, we did not observe any change in the proportion of neurons in laminae I–III of the ipsilateral dorsal horn that showed GABA‐ or glycine‐immunoreactivity compared to the contralateral side in these animals, and these proportions did not differ significantly from those seen in sham‐operated or naïve animals. In addition, we did not see any evidence for alterations of GABA‐ or glycine‐immunostaining in the neuropil of laminae I–III in the animals that had undergone CCI. Our results suggest that significant loss of GABAergic or glycinergic neurons is not necessary for the development of thermal hyperalgesia in the CCI model of neuropathic pain.


Neuroscience | 1996

Direct evidence of an extensive GABAergic innervation of the spinal dorsal horn by fibres descending from the rostral ventromedial medulla.

Miklós Antal; M. Petkó; Erika Polgár; Claus W. Heizmann; Jon Storm-Mathisen

A long line of studies emphasizes the contribution of serotonergic fibres descending from the rostral ventromedial medulla in the control of spinal nociceptive information processing. A growing body of evidence, however, suggests that the relative contribution of serotonin to the mediation of spinal neuronal activity from the rostral ventromedial medulla may require re-evaluation. It has recently been substantiated that, in addition to the serotonergic fibres, the spinal dorsal horn receives an abundant non-serotonergic projection from the rostral ventromedial medulla. Furthermore, stimulation in the rostral ventromedial medulla could result in a powerful inhibition of nociceptive spinothalamic tract cells without any detectable serotonin release in the dorsal horn. After labelling raphe-spinal axons and axon terminals in the rat by iontophoretic injections of the anterograde axonal tracer Phaseolus vulgaris leucoagglutinin into the central region of the rostral ventromedial medulla (nucleus raphe magnus) and revealing GABA and glycine immunoreactivities of the labelled raphe-spinal terminals and their postsynaptic targets by postembedding immunocytochemical methods, here we demonstrate an extensive GABAergic projection from the rostral ventromedial medulla to the spinal dorsal horn. We show that the majority of the labelled raphe-spinal terminals in laminae I-IIo and IV-V contain GABA and some of the GABA-immunoreactive terminals are also immunoreactive for glycine. We also disclose that GABA-immunoreactive raphe-spinal terminals establish synaptic contacts primarily with GABA- and glycine-negative, presumably excitatory, spinal neurons, including Calbindin-D28k- as well as parvalbumin-immunoreactive cells in both laminae I-IIo and IV-V. The results suggest that volleys in fibres descending from the rostral ventromedial medulla may evoke GABA release from raphe-spinal terminals, and the released GABA, in some cases probably acting together with glycine, might play a crucial, as yet mostly unidentified, role in the inhibition of nociceptive information processing in the dorsal horn of the spinal cord.


Brain Research | 1999

The types of neuron which contain protein kinase C gamma in rat spinal cord

Erika Polgár; Jill H. Fowler; M.M McGill; Andrew J. Todd

Protein kinase C (PKC) is thought to have a role in sensitization of dorsal horn neurons in certain pain states, and a recent study has reported that mice which lack the gamma isoform (PKCgamma) show reduced neuropathic pain after peripheral nerve injury. Although PKCgamma is present at high levels in the ventral part of lamina II we have limited information concerning the types of neuron in which it is located. In this study we have used immunocytochemistry to characterise the neurons which contain PKCgamma. Immunoreactive neurons were concentrated in ventral lamina II, but were also present in lamina III. Some weakly-immunoreactive neurons were located in the dorsal part of lamina II and in lamina I. The great majority (92%) of cells with PKCgamma were not GABA-immunoreactive, and these cells are likely to be excitatory interneurons. Dual-immunofluorescence labelling showed that PKCgamma was not randomly distributed amongst non-GABAergic neurons, since it was present in 76% of cells with neurotensin and 45% of those with somatostatin, but only 5% of those with the mu-opioid receptor (MOR-1). Cells with the neurokinin 1 receptor are found in lamina I and lamina III, and PKCgamma was present in 22% and 37% of these populations, respectively. These results suggest that excitatory interneurons in laminae II and III which lack the micro-opioid receptor may have a significant role in generating neuropathic pain.


Neuroscience | 1998

A quantitative study of neurons which express neurokinin-1 or somatostatin sst2a receptor in rat spinal dorsal horn.

Andrew J. Todd; Rosemary C. Spike; Erika Polgár

The neurokinin-1 and somatostatin sst2a receptors have both been identified on spinal cord neurons. In this study we have estimated the proportions of neurons in different parts of the spinal cord which express these receptors, by using a monoclonal antibody against a neuronal nuclear protein named NeuN and combining the optical disector method with confocal microscopy. The NeuN antibody was initially tested on over 3200 neurons identified with antisera against a variety of compounds, including neuropeptides, enzymes and receptors, and also on astrocytes and oligodendrocytes. All of the neurons, but none of the glial cells that were examined possessed NeuN-immunoreactivity, which suggests that NeuN is a reliable marker for all spinal cord neurons. We found that approximately 45% of neurons in lamina I, 23-29% of those in laminae IV-VI and 18% in lamina X possessed the neurokinin-1 receptor, while the receptor was present on a smaller proportion of neurons in laminae II and III (6% and 11%, respectively). Thirteen percent of lamina I neurons and 15% of those in lamina II expressed the sst2a receptor. To provide further information about the types of neuron which possess the sst2a receptor, we searched for possible co-existence with the neurokinin-1 receptor as well as with GABA and glycine. sst2a and neurokinin-1 receptors were not co-localized on neurons in laminae I and II. All of the sst2a-immunoreactive neurons examined were also GABA-immunoreactive, and 83.5% were glycine-immunoreactive, indicating that the receptor is located on inhibitory neurons in the superficial dorsal horn. These results demonstrate the proportions of neurons in each region of the spinal cord which can be directly activated by substance P or somatostatin acting through these receptors. Levels of receptors can change in pathological states, and this method could be used to determine whether or not these changes involve alterations in the number of neurons which express receptors. In addition, the method can be used to estimate the sizes of neurochemically-defined populations of spinal cord neurons.


Neuron | 2014

Dynorphin Acts as a Neuromodulator to Inhibit Itch in the Dorsal Horn of the Spinal Cord

Adam P. Kardon; Erika Polgár; Junichi Hachisuka; Lindsey M. Snyder; Darren Cameron; Sinead Savage; Xiaoyun Cai; Sergei Karnup; Christopher R. Fan; Gregory M. Hemenway; Carcha S. Bernard; Erica S. Schwartz; Hiroshi Nagase; Christoph Schwarzer; Masahiko Watanabe; Takahiro Furuta; Takeshi Kaneko; H. Richard Koerber; Andrew J. Todd; Sarah E. Ross

Summary Menthol and other counterstimuli relieve itch, resulting in an antipruritic state that persists for minutes to hours. However, the neural basis for this effect is unclear, and the underlying neuromodulatory mechanisms are unknown. Previous studies revealed that Bhlhb5−/− mice, which lack a specific population of spinal inhibitory interneurons (B5-I neurons), develop pathological itch. Here we characterize B5-I neurons and show that they belong to a neurochemically distinct subset. We provide cause-and-effect evidence that B5-I neurons inhibit itch and show that dynorphin, which is released from B5-I neurons, is a key neuromodulator of pruritus. Finally, we show that B5-I neurons are innervated by menthol-, capsaicin-, and mustard oil-responsive sensory neurons and are required for the inhibition of itch by menthol. These findings provide a cellular basis for the inhibition of itch by chemical counterstimuli and suggest that kappa opioids may be a broadly effective therapy for pathological itch.


Pain | 2004

Lack of evidence for significant neuronal loss in laminae I–III of the spinal dorsal horn of the rat in the chronic constriction injury model

Erika Polgár; S Gray; John S. Riddell; Andrew J. Todd

&NA; Peripheral nerve injury leads to structural and functional changes in the spinal dorsal horn, and these are thought to be involved in the development of neuropathic pain. In the chronic constriction injury (CCI) model, abnormal ‘dark’ neurons and apoptotic nuclei have been observed in laminae I–III of the dorsal horn in the territory innervated by the injured sciatic nerve. These findings have been taken as evidence that there is significant neuronal death in this model, and it has been suggested that loss of inhibition resulting from death of GABAergic inhibitory interneurons contributes to the neuropathic pain. However, loss of neurons from the dorsal horn has not been directly demonstrated in neuropathic models, even though this issue is of considerable importance for our understanding of the mechanisms that underlie neuropathic pain. In this study, we have looked for evidence of neuronal death by using a stereological method (the optical disector) with NeuN‐immunostaining, and examining spinal cords of naïve rats, and of rats that had undergone CCI or sham operations. All of the CCI animals showed clear signs of thermal hyperalgesia. However, the numbers of neurons in laminae I–III of the ipsilateral dorsal horn in these animals did not differ significantly from those on the contralateral side, nor from those of sham‐operated or naïve animals. These results do not, therefore, support the suggestion that there is significant neuronal death in the dorsal horn in this model.


The Journal of Neuroscience | 2005

Loss of Neurons from Laminas I-III of the Spinal Dorsal Horn Is Not Required for Development of Tactile Allodynia in the Spared Nerve Injury Model of Neuropathic Pain

Erika Polgár; David I. Hughes; Ahmad Z. Arham; Andrew J. Todd

It has been proposed that death of inhibitory interneurons in the dorsal horn contributes to the neuropathic pain that follows partial nerve injury. In this study, we have used two approaches to test whether there is neuronal death in the dorsal horn in the spared nerve injury (SNI) model. We performed a stereological analysis of the packing density of neurons in laminas I-III 4 weeks after operation and found no reduction on the ipsilateral side compared with that seen on the contralateral side or in sham-operated or naive rats. In addition, we used two markers of apoptosis, terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling (TUNEL) staining and immunocytochemical detection of cleaved (activated) caspase-3. Neither of these methods demonstrated apoptotic neurons in the dorsal spinal cord 1 week after operation. Although TUNEL-positive cells were present throughout the gray and white matter at this stage, they were virtually all labeled with antibody against ionized calcium-binding adapter molecule 1, a marker for microglia. All animals that underwent SNI showed clear signs of tactile allodynia affecting the ipsilateral hindpaw. These results suggest that a significant loss of neurons from the dorsal horn is not necessary for the development of tactile allodynia in the SNI model.


Neuroscience | 2008

Tactile allodynia can occur in the spared nerve injury model in the rat without selective loss of GABA or GABAA receptors from synapses in laminae I–II of the ipsilateral spinal dorsal horn

Erika Polgár; Andrew J. Todd

Although there is evidence that reduced inhibition in the spinal dorsal horn contributes to neuropathic pain, the mechanisms that underlie this are poorly understood. We have previously demonstrated that there is no loss of neurons from laminae I–III in the spared nerve injury (SNI) model [Polgár E, Hughes DI, Arham AZ, Todd AJ (2005) Loss of neurons from laminas I-III of the spinal dorsal horn is not required for development of tactile allodynia in the SNI model of neuropathic pain. J Neurosci 25:6658–6666]. In this study we investigated whether there was a difference between ipsilateral and contralateral sides in the levels of GABA, the vesicular GABA transporter (VGAT), or the β3 subunit of the GABAA receptor at synapses in the medial part of the superficial dorsal horn in this model. Tissue from rats that had undergone SNI 4 weeks previously was examined with an electron microscopic immunogold method to reveal GABA, following pre-embedding detection of GABAA β3 to allow identification of GABAergic terminals. Assessment of labeling for the GABAA β3 subunit and VGAT was performed by using immunofluorescence and confocal microscopy. We found no difference in the intensity of immunolabeling for any of these markers on the two sides of the superficial dorsal horn. These results suggest that there is no significant loss of GABAergic boutons from the denervated area after SNI (which is consistent with the finding that neuronal death does not occur in this model) and that there is no depletion of GABA or GABAA receptors at GABAergic synapses within this region. An alternative explanation for disinhibition after nerve injury is that it results from reduced excitatory drive to GABAergic dorsal horn neurons following loss of primary afferent input to these cells.


PLOS Biology | 2012

Presynaptically localized cyclic GMP-dependent protein kinase 1 is a key determinant of spinal synaptic potentiation and pain hypersensitivity.

Ceng Luo; Vijayan Gangadharan; Kiran Kumar Bali; Rou-Gang Xie; Nitin Agarwal; Martina Kurejova; Anke Tappe-Theodor; Irmgard Tegeder; Susanne Feil; Gary R. Lewin; Erika Polgár; Andrew J. Todd; Jens Schlossmann; Franz Hofmann; Da-Lu Liu; San-Jue Hu; Robert Feil; Thomas Kuner; Rohini Kuner

Electrophysiological and behavioral experiments in mice reveal that a cGMP-dependent kinase amplifies neurotransmitter release from peripheral pain sensors, potentiates spinal synapses, and leads to exaggerated pain.

Collaboration


Dive into the Erika Polgár's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge