Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erika V. Valore is active.

Publication


Featured researches published by Erika V. Valore.


Journal of Biological Chemistry | 2001

Hepcidin, a Urinary Antimicrobial Peptide Synthesized in the Liver

Christina H. Park; Erika V. Valore; Alan J. Waring; Tomas Ganz

Cysteine-rich antimicrobial peptides are abundant in animal and plant tissues involved in host defense. In insects, most are synthesized in the fat body, an organ analogous to the liver of vertebrates. From human urine, we characterized a cysteine-rich peptide with three forms differing by amino-terminal truncation, and we named it hepcidin (Hepc) because of its origin in the liver and its antimicrobial properties. Two predominant forms, Hepc20 and Hepc25, contained 20 and 25 amino acid residues with all 8 cysteines connected by intramolecular disulfide bonds. Reverse translation and search of the data bases found homologous liver cDNAs in species from fish to human and a corresponding human genomic sequence on human chromosome 19. The full cDNA by 5′ rapid amplification of cDNA ends was 0.4 kilobase pair, in agreement with hepcidin mRNA size on Northern blots. The liver was the predominant site of mRNA expression. The encoded prepropeptide contains 84 amino acids, but only the 20–25-amino acid processed forms were found in urine. Hepcidins exhibited antifungal activity against Candida albicans,Aspergillus fumigatus, and Aspergillus nigerand antibacterial activity against Escherichia coli,Staphylococcus aureus, Staphylococcus epidermidis, and group B Streptococcus. Hepcidin may be a vertebrate counterpart of cysteine-rich antimicrobial peptides produced in the fat body of insects.


Journal of Clinical Investigation | 1998

Human beta-defensin-1: an antimicrobial peptide of urogenital tissues.

Erika V. Valore; Christina H. Park; Alison J. Quayle; K R Wiles; Paul B. McCray; Tomas Ganz

Antimicrobial peptides are widely distributed mediators of innate host defense in animals and plants. A 36 amino acid antimicrobial peptide belonging to the defensin family, and named human beta-defensin-1 (HBD-1), was purified recently from hemodialysate fluid, but its tissue sources were not identified. By Northern blotting, we found the highest concentrations of HBD-1 mRNA in the kidney and the female reproductive tract. In situ hybridization localized the HBD-1 mRNA in the epithelial layers of the loops of Henle, distal tubules, and the collecting ducts of the kidney and the epithelial layers of the vagina, ectocervix, endocervix, uterus, and fallopian tubes in the female reproductive tract. Using a novel technique designed to detect cationic peptides in urine, we recovered several forms of HBD-1 ranging in length from 36 to 47 amino acid (aa) residues and differing from each other by amino terminal truncation. The total concentration of HBD-1 forms in voided urine was estimated at 10-100 microg/liter, with individual variations in the total amount of HBD-1 peptides and the relative proportion of HBD-1 forms. Multiple forms of HBD-1 (size 36-47 aa) were also found in the blood plasma, bound to carrier macromolecules that released the peptide under acid conditions, and in vaginal mucosal secretions (39, 40, and 44 aa). By immunostaining, HBD-1 was located in the kidney within the lumen of the loops of Henle, but no intracellular storage sites were identified in renal or female reproductive tissues. Recombinant HBD-1 forms (36, 39, and 42 aa) and natural HBD-1 forms were antimicrobial to laboratory and clinical strains of Escherichia coli at micromolar concentrations. HBD-1 activity was not changed appreciably by low pH, but was inhibited by high salt conditions. Some of the HBD-1 peptides retained their activity against E. coli in unconcentrated (low conductance) urine, and the 36 aa form was microbicidal even in normal (high conductance) urine. Production of HBD-1 in the urogenital tract could contribute to local antimicrobial defense.


Nature Genetics | 2014

Identification of erythroferrone as an erythroid regulator of iron metabolism

Léon Kautz; Grace Jung; Erika V. Valore; Stefano Rivella; Elizabeta Nemeth; Tomas Ganz

Recovery from blood loss requires a greatly enhanced supply of iron to support expanded erythropoiesis. After hemorrhage, suppression of the iron-regulatory hormone hepcidin allows increased iron absorption and mobilization from stores. We identified a new hormone, erythroferrone (ERFE), that mediates hepcidin suppression during stress erythropoiesis. ERFE is produced by erythroblasts in response to erythropoietin. ERFE-deficient mice fail to suppress hepcidin rapidly after hemorrhage and exhibit a delay in recovery from blood loss. ERFE expression is greatly increased in Hbbth3/+ mice with thalassemia intermedia, where it contributes to the suppression of hepcidin and the systemic iron overload characteristic of this disease.


Journal of Clinical Investigation | 2006

Injury-induced innate immune response in human skin mediated by transactivation of the epidermal growth factor receptor

Ole E. Sørensen; Dharma R. Thapa; K. Markus Roupé; Erika V. Valore; Ulf Sjöbring; Alice A. Roberts; Artur Schmidtchen; Tomas Ganz

We found that sterile wounding of human skin induced epidermal expression of the antimicrobial (poly)peptides human beta-defensin-3, neutrophil gelatinase-associated lipocalin, and secretory leukocyte protease inhibitor through activation of the epidermal growth factor receptor. After skin wounding, the receptor was activated by heparin-binding epidermal growth factor that was released by a metalloprotease-dependent mechanism. Activation of the epidermal growth factor receptor generated antimicrobial concentrations of human beta-defensin-3 and increased the activity of organotypic epidermal cultures against Staphylococcus aureus. These data demonstrate that sterile wounding initiates an innate immune response that increases resistance to overt infection and microbial colonization.


Journal of Clinical Investigation | 1996

Intramolecular inhibition of human defensin HNP-1 by its propiece.

Erika V. Valore; E. Martin; Sylvia S.L. Harwig; Tomas Ganz

We examined mechanisms that protect host defense cells from their cytotoxic effector molecules. Human neutrophil peptides (HNP) 1-3 are microbicidal and cytotoxic defensins, initially synthesized as 94-amino acid preproHNP(1-94), cotranslationally proteolyzed to proHNP(20-94), then converted by removal of the anionic propiece to mature HNP(65-94)(HNP-1 and -3) and HNP(66-94) (HNP-2). We hypothesized that during synthesis and subcellular sorting the anionic propiece inhibits the cytotoxicity of the cationic defensin. We expressed preproHNP-1 cDNA in recombinant baculovirus-infected insect cells that secreted the normally transient proHNP-1(20-94) into the medium. Cyanogen bromide cleaved proHNP-1(20-94) at the fortuitously located Met64 to yield mature recombinant HNP-1(65-94) and unlinked propiece. Recombinant and native HNP-1 purified from PMN were identical as judged by mass spectrometry, retention time in reverse-phase high performance liquid chromatography, migration on acid-urea polyacrylamide gels, and reaction with a conformation-specific antibody. Recombinant and native HNP-1 had comparable microbicidal activity towards Listeria monocytogenes and were similarly potent in permeabilizing K562 leukemia cells, but proHNP-1(20-94) was virtually inactive in both assays. Addition of unlinked propiece (proHNP-1(20-64) with Met64-->homoserine) inhibited the bactericidal and cell-permeabilizing activity of mature HNP-1 in a dose-dependent manner. Linked, and to a lesser extent unlinked, propiece interfered with the binding of HNP-1 to target cells. The propiece thus acts as an efficient intramolecular inhibitor of defensin HNP-1 cytotoxicity.


Infection and Immunity | 2006

Reversible Deficiency of Antimicrobial Polypeptides in Bacterial Vaginosis

Erika V. Valore; Dorothy J. Wiley; Tomas Ganz

ABSTRACT Bacterial vaginosis is a common condition associated with increased risk of sexually transmitted diseases, including human immunodeficiency virus infections. In contrast, vulvovaginal candidiasis has a much weaker association with sexually transmitted diseases. We found that vaginal lavage fluid from women with bacterial vaginosis is deficient in antimicrobial polypeptides and antimicrobial activity compared to fluid from healthy women or women with vulvovaginal candidiasis. Effective treatment normalized the concentrations of antimicrobial polypeptides in both bacterial vaginosis and in vulvovaginal candidiasis, suggesting that the abnormalities were a result of the diseases. Unlike in vulvovaginal candidiasis, the neutrophil attractant chemokine interleukin-8 (IL-8) was not increased in bacterial vaginosis, accounting for low concentrations of neutrophil-derived defensins in vaginal fluid. In organotypic cultures of human vaginal epithelium containing dendritic cells, treatment with Lactobacillus jensenii, a typical vaginal resident, induced the synthesis of IL-8 mRNA and the epithelial human β-defensin-2 mRNA, but a typical bacterial vaginosis pathogen, Gardnerella vaginalis, had no effect. When the two bacteria were combined, Gardnerella vaginalis did not interfere with the immunostimulatory effect of Lactobacillus jensenii. The loss of normal immunostimulatory flora in bacterial vaginosis is thus associated with a local deficiency of multiple innate immune factors, and this deficiency could predispose individuals to sexually transmitted diseases.


Cell Host & Microbe | 2015

Hepcidin-Induced Hypoferremia Is a Critical Host Defense Mechanism Against the Siderophilic Bacterium Vibrio vulnificus

João Arezes; Grace Jung; Victoria Gabayan; Erika V. Valore; Piotr Ruchala; Paul A. Gulig; Tomas Ganz; Elizabeta Nemeth; Yonca Bulut

Hereditary hemochromatosis, an iron overload disease caused by a deficiency in the iron-regulatory hormone hepcidin, is associated with lethal infections by siderophilic bacteria. To elucidate the mechanisms of this susceptibility, we infected wild-type and hepcidin-deficient mice with the siderophilic bacterium Vibrio vulnificus and found that hepcidin deficiency results in increased bacteremia and decreased survival of infected mice, which can be partially ameliorated by dietary iron depletion. Additionally, timely administration of hepcidin agonists to hepcidin-deficient mice induces hypoferremia that decreases bacterial loads and rescues these mice from death, regardless of initial iron levels. Studies of Vibrio vulnificus growth ex vivo show that high iron sera from hepcidin-deficient mice support extraordinarily rapid bacterial growth and that this is inhibited in hypoferremic sera. Our findings demonstrate that hepcidin-mediated hypoferremia is a host defense mechanism against siderophilic pathogens and suggest that hepcidin agonists may improve infection outcomes in patients with hereditary hemochromatosis or thalassemia.


Pediatric Research | 2000

β-Defensin expression in human mammary gland epithelia.

Christina R Tunzi; Patricia A. Harper; Benjamin Bar-Oz; Erika V. Valore; John Semple; Jo Watson-MacDonell; Tomas Ganz; Shinya Ito

Milk of mammalian species contains a wide spectrum of anti-infectious factors, some of which are heat stable. Focusing on recently discovered heat-stable antibacterial peptides called defensins, which are expressed in epithelial tissues such as airway, skin, and kidney, we hypothesized that mammary gland epithelia produce and secrete defensins onto the epithelial surface and into milk. Using a reverse-transcription PCR assay, we identified the human β-defensin-1 (hBD-1) gene transcript in a human mammary gland epithelial cell line, MCF-12A, and in mammary glandular tissue of nine nonlactating women. Epithelial cells harvested from milk of lactating women also expressed hBD-1 mRNA. Presence of hBD-1 peptide in mammary epithelia was confirmed by immunostaining with an hBD-1 antibody. In contrast, expression of human β-defensin-2 was not apparent both at mRNA and protein levels. Our findings suggest a biologic role of hBD-1 in the human mammary gland.


Blood | 2014

A mouse model of anemia of inflammation: complex pathogenesis with partial dependence on hepcidin

Airie Kim; Eileen Fung; Sona G. Parikh; Erika V. Valore; Victoria Gabayan; Elizabeta Nemeth; Tomas Ganz

Anemia is a common complication of infections and inflammatory diseases, but the few mouse models of this condition are not well characterized. We analyzed in detail the pathogenesis of anemia induced by an injection of heat-killed Brucella abortus and examined the contribution of hepcidin by comparing wild-type (WT) to iron-depleted hepcidin-1 knockout (Hamp-KO) mice. B abortus-treated WT mice developed severe anemia with a hemoglobin nadir at 14 days and partial recovery by 28 days. After an early increase in inflammatory markers and hepcidin, WT mice manifested hypoferremia, despite iron accumulation in the liver. Erythropoiesis was suppressed between days 1 and 7, and erythrocyte destruction was increased as evidenced by schistocytes on blood smears and shortened red blood cell lifespan. Erythropoietic recovery began after 14 days but was iron restricted. In B abortus-treated Hamp-KO compared with WT mice, anemia was milder, not iron restricted, and had a faster recovery. Similarly to severe human anemia of inflammation, the B abortus model shows multifactorial pathogenesis of inflammatory anemia including iron restriction from increased hepcidin, transient suppression of erythropoiesis, and shortened erythrocyte lifespan. Ablation of hepcidin relieves iron restriction and improves the anemia.


Journal of Biological Chemistry | 2009

Differential Processing of α- and β-Defensin Precursors by Matrix Metalloproteinase-7 (MMP-7)

Carole L. Wilson; Amy P. Schmidt; Emma Pirilä; Erika V. Valore; Nicola Ferri; Timo Sorsa; Tomas Ganz; William C. Parks

Proteolytic processing of defensins is a critical mode of posttranslational regulation of peptide activity. Because mouse α-defensin precursors are cleaved and activated by matrix metalloproteinase-7 (MMP-7), we determined if additional defensin molecules, namely human neutrophil defensin pro-HNP-1 and β-defensins, are targets for MMP-7. We found that MMP-7 cleaves within the pro-domain of the HNP-1 precursor, a reaction that does not generate the mature peptide but produces a 59-amino acid intermediate. This intermediate, which retains the carboxyl-terminal end of the pro-domain, had antimicrobial activity, indicating that the residues important for masking defensin activity reside in the amino terminus of this domain. Mature HNP-1 was resistant to processing by MMP-7 unless the peptide was reduced and alkylated, demonstrating that only the pro-domain of α-defensins is normally accessible for cleavage by this enzyme. From the 47-residue HBD-1 precursor, MMP-7 catalyzed removal of 6 amino acids from the amino terminus. Neither a 39-residue intermediate form of HBD-1 nor the mature 36-residue form of HBD-1 was cleaved by MMP-7. In addition, both pro-HBD-2, with its shorter amino-terminal extension, and pro-HBD-3 were resistant to MMP-7. However, human and mouse β-defensin precursors that lack disulfide bonding contain a cryptic MMP-7-sensitive site within the mature peptide moiety. These findings support and extend accumulating evidence that the native three-dimensional structure of both α- and β-defensins protects the mature peptides against proteolytic processing by MMP-7. We also conclude that sites for MMP-7 cleavage are more common at the amino termini of α-defensin rather than β-defensin precursors, and that catalysis at these sites in α-defensin pro-domains results in acquisition of defensin activity.

Collaboration


Dive into the Erika V. Valore's collaboration.

Top Co-Authors

Avatar

Tomas Ganz

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Grace Jung

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefano Rivella

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Lide Liu

University of California

View shared research outputs
Top Co-Authors

Avatar

Airie Kim

University of California

View shared research outputs
Top Co-Authors

Avatar

Alan J. Waring

Los Angeles Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Amy P. Schmidt

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge