Erika Varkonyi-Gasic
Plant & Food Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Erika Varkonyi-Gasic.
Plant Methods | 2007
Erika Varkonyi-Gasic; Rongmei Wu; Marion Wood; Eric F. Walton; Roger P. Hellens
MicroRNAs (miRNAs) are a class of small non-coding RNAs with a critical role in development and environmental responses. Efficient and reliable detection of miRNAs is an essential step towards understanding their roles in specific cells and tissues. However, gel-based assays currently used to detect miRNAs are very limited in terms of throughput, sensitivity and specificity. Here we provide protocols for detection and quantification of miRNAs by RT-PCR. We describe an end-point and real-time looped RT-PCR procedure and demonstrate detection of miRNAs from as little as 20 pg of plant tissue total RNA and from total RNA isolated from as little as 0.1 μl of phloem sap. In addition, we have developed an alternative real-time PCR assay that can further improve specificity when detecting low abundant miRNAs. Using this assay, we have demonstrated that miRNAs are differentially expressed in the phloem sap and the surrounding vascular tissue. This method enables fast, sensitive and specific miRNA expression profiling and is suitable for facilitation of high-throughput detection and quantification of miRNA expression.
Methods of Molecular Biology | 2011
Erika Varkonyi-Gasic; Roger P. Hellens
Plant microRNAs (miRNAs) are a class of endogenous small RNAs that are essential for plant development and survival. They arise from larger precursor RNAs with a characteristic hairpin structure and regulate gene activity by targeting mRNA transcripts for cleavage or translational repression. Efficient and reliable detection and quantification of miRNA expression has become an essential step in understanding their specific roles. The expression levels of miRNAs can vary dramatically between samples and they often escape detection by conventional technologies such as cloning, northern hybridization and microarray analysis. The stem-loop RT-PCR method described here is designed to detect and quantify mature miRNAs in a fast, specific, accurate and reliable manner. First, a miRNA-specific stem-loop RT primer is hybridized to the miRNA and then reverse transcribed. Next, the RT product is amplified and monitored in real time using a miRNA-specific forward primer and the universal reverse primer. This method enables miRNA expression profiling from as little as 10 pg of total RNA and is suitable for high-throughput miRNA expression analysis.
Tree Physiology | 2011
Naozumi Mimida; Shin-ichiro Kidou; Hiroshi Iwanami; Shigeki Moriya; Kazuyuki Abe; Charlotte Voogd; Erika Varkonyi-Gasic; Nobuhiro Kotoda
Understanding the flowering process in apple (Malus × domestica Borkh.) is essential for developing methods to shorten the breeding period and regulate fruit yield. It is known that FLOWERING LOCUS T (FT) acts as a transmissible floral inducer in the Arabidopsis flowering network system. To clarify the molecular network of two apple FT orthologues, MdFT1 and MdFT2, we performed a yeast two-hybrid screen to identify proteins that interact with MdFT1. We identified several transcription factors, including two members of the TCP (TEOSINTE BRANCHED1, CYCLOIDEA and PROLIFERATING CELL FACTORs) family, designated MdTCP2 and MdTCP4, and an Arabidopsis thaliana VOZ1 (Vascular plant One Zinc finger protein1)-like protein, designated MdVOZ1. MdTCP2 and MdVOZ1 also interacted with MdFT2 in yeast. The expression domain of MdTCP2 and MdVOZ1 partially overlapped with that of MdFT1 and MdFT2, most strikingly in apple fruit tissue, further suggesting a potential interaction in vivo. Constitutive expression of MdTCP2, MdTCP4 and MdVOZ1 in Arabidopsis affected plant size, leaf morphology and the formation of leaf primordia on the adaxial side of cotyledons. On the other hand, chimeric MdTCP2, MdTCP4 and MdVOZ1 repressors that included the ethylene-responsive transcription factors (ERF)-associated amphiphilic repression (EAR) domain motif influenced reproduction and inflorescence architecture in transgenic Arabidopsis. These results suggest that MdFT1 and/or MdFT2 might be involved in the regulation of cellular proliferation and the formation of new tissues and that they might affect leaf and fruit development by interacting with TCP- and VOZ-family proteins. DDBJ accession nos. AB531019 (MdTCP2a mRNA), AB531020 (MdTCP2b mRNA), AB531021 (MdTCP4a mRNA), AB531022 (MdTCP4b mRNA) and AB531023 (MdVOZ1a mRNA).
Journal of Experimental Botany | 2016
Yuhui Liu; Kui Lin-Wang; Richard V. Espley; Li Wang; Hongyu Yang; Bin Yu; Andrew P. Dare; Erika Varkonyi-Gasic; Jing Wang; Junlian Zhang; Di Wang; Andrew C. Allan
Highlight We report evidence of the diversification and interaction of anthocyanin-related MYB activators and basic helix-loop-helix cofactors, which regulate anthocyanin biosynthesis in the potato tuber.
BMC Plant Biology | 2011
Erika Varkonyi-Gasic; Sarah M. A. Moss; Charlotte Voogd; Rongmei Wu; Robyn H. Lough; Yen-Yi Wang; Roger P. Hellens
BackgroundFlower development in kiwifruit (Actinidia spp.) is initiated in the first growing season, when undifferentiated primordia are established in latent shoot buds. These primordia can differentiate into flowers in the second growing season, after the winter dormancy period and upon accumulation of adequate winter chilling. Kiwifruit is an important horticultural crop, yet little is known about the molecular regulation of flower development.ResultsTo study kiwifruit flower development, nine MADS-box genes were identified and functionally characterized. Protein sequence alignment, phenotypes obtained upon overexpression in Arabidopsis and expression patterns suggest that the identified genes are required for floral meristem and floral organ specification. Their role during budbreak and flower development was studied. A spontaneous kiwifruit mutant was utilized to correlate the extended expression domains of these flowering genes with abnormal floral development.ConclusionsThis study provides a description of flower development in kiwifruit at the molecular level. It has identified markers for flower development, and candidates for manipulation of kiwifruit growth, phase change and time of flowering. The expression in normal and aberrant flowers provided a model for kiwifruit flower development.
Methods of Molecular Biology | 2010
Erika Varkonyi-Gasic; Roger P. Hellens
Plant small RNAs are a class of 19- to 25-nucleotide (nt) RNA molecules that are essential for genome stability, development and differentiation, disease, cellular communication, signaling, and adaptive responses to biotic and abiotic stress. Small RNAs comprise two major RNA classes, short interfering RNAs (siRNAs) and microRNAs (miRNAs). Efficient and reliable detection and quantification of small RNA expression has become an essential step in understanding their roles in specific cells and tissues. Here we provide protocols for the detection of miRNAs by stem-loop RT-PCR. This method enables fast and reliable miRNA expression profiling from as little as 20 pg of total RNA extracted from plant tissue and is suitable for high-throughput miRNA expression analysis. In addition, this method can be used to detect other classes of small RNAs, provided the sequence is known and their GC contents are similar to those specific for miRNAs.
Current Opinion in Plant Biology | 2016
Joanna Putterill; Erika Varkonyi-Gasic
The great hunt for florigen, the universal, long distance flowering regulator proposed by Chailakhan in the 1930s, resulted in the discovery a decade ago that FT-like proteins fulfilled the predictions for florigen. They are small (∼175 amino acids), globular, phosphatidylethanolamine-binding (PEBP) proteins, phloem-expressed, graft-transmissible and able to move to the shoot apex to act as potent stimulators of flowering in many plants. Genes that regulate Arabidopsis FT protein movement and some features of Arabidopsis FT protein that make it an effective florigen have recently been identified. Although floral promotion via graft transmission of FT has not been demonstrated in trees, FT-like genes have been successfully applied to reducing the long juvenile (pre-flowering) phase of many trees enabling fast track breeding.
Journal of Experimental Botany | 2015
Charlotte Voogd; Tianchi Wang; Erika Varkonyi-Gasic
Highlight The expanded kiwifruit SOC1-like gene family causes early flowering in Arabidopsis and not kiwifruit, but may affect duration of kiwifruit dormancy, potentially by interaction with SVP.
Journal of Experimental Botany | 2014
Rongmei Wu; Tianchi Wang; Tony McGie; Charlotte Voogd; Andrew C. Allan; Roger P. Hellens; Erika Varkonyi-Gasic
Summary Overexpression of SVP3 affects kiwifruit flower and fruit development. The reduced petal pigmentation results from interference with transcription of the kiwifruit flower tissue-specific R2R3 MYB regulator.
Frontiers in Plant Science | 2017
Rongmei Wu; Sumathi Tomes; Sakuntala Karunairetnam; Stuart Tustin; Roger P. Hellens; Andrew C. Allan; Erika Varkonyi-Gasic
The annual growth cycle of trees is the result of seasonal cues. The onset of winter triggers an endodormant state preventing bud growth and, once a chilling requirement is satisfied, these buds enter an ecodormant state and resume growing. MADS-box genes with similarity to Arabidopsis SHORT VEGETATIVE PHASE (SVP) [the SVP-like and DORMANCY ASSOCIATED MADS-BOX (DAM) genes] have been implicated in regulating flowering and growth-dormancy cycles in perennials. Here, we identified and characterized three DAM-like (MdDAMs) and two SHORT VEGETATIVE PHASE-like (MdSVPs) genes from apple (Malus × domestica ‘Royal Gala’). The expression of MdDAMa and MdDAMc indicated they may play a role in triggering autumn growth cessation. In contrast, the expression of MdDAMb, MdSVPa and MdSVPb suggested a role in maintaining bud dormancy. Consistent with this, ectopic expression of MdDAMb and MdSVPa in ‘Royal Gala’ apple plants resulted in delayed budbreak and architecture change due to constrained lateral shoot outgrowth, but normal flower and fruit development. The association of MdSVPa and MdSVPb expression with floral bud development in the low fruiting ‘Off’ trees of a biennial bearing cultivar ‘Sciros’ suggested the SVP genes might also play a role in floral meristem identity.