Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erika von Euw is active.

Publication


Featured researches published by Erika von Euw.


Journal of Translational Medicine | 2010

Differential sensitivity of melanoma cell lines with BRAFV600E mutation to the specific Raf inhibitor PLX4032

Jonas Sondergaard; Ramin Nazarian; Qi Wang; Deliang Guo; Teli Hsueh; Stephen Mok; Hooman Sazegar; Laura E. MacConaill; Jordi Barretina; Sarah M. Kehoe; Narsis Attar; Erika von Euw; Jonathan E. Zuckerman; Bartosz Chmielowski; Begoña Comin-Anduix; Richard C. Koya; Paul S. Mischel; Roger S. Lo; Antoni Ribas

Blocking oncogenic signaling induced by the BRAFV600E mutation is a promising approach for melanoma treatment. We tested the anti-tumor effects of a specific inhibitor of Raf protein kinases, PLX4032/RG7204, in melanoma cell lines. PLX4032 decreased signaling through the MAPK pathway only in cell lines with the BRAFV600E mutation. Seven out of 10 BRAFV600E mutant cell lines displayed sensitivity based on cell viability assays and three were resistant at concentrations up to 10 μM. Among the sensitive cell lines, four were highly sensitive with IC50 values below 1 μM, and three were moderately sensitive with IC50 values between 1 and 10 μM. There was evidence of MAPK pathway inhibition and cell cycle arrest in both sensitive and resistant cell lines. Genomic analysis by sequencing, genotyping of close to 400 oncogeninc mutations by mass spectrometry, and SNP arrays demonstrated no major differences in BRAF locus amplification or in other oncogenic events between sensitive and resistant cell lines. However, metabolic tracer uptake studies demonstrated that sensitive cell lines had a more profound inhibition of FDG uptake upon exposure to PLX4032 than resistant cell lines. In conclusion, BRAFV600E mutant melanoma cell lines displayed a range of sensitivities to PLX4032 and metabolic imaging using PET probes can be used to assess sensitivity.


PLOS ONE | 2011

Reversing Melanoma Cross-Resistance to BRAF and MEK Inhibitors by Co-Targeting the AKT/mTOR Pathway

Mohammad Atefi; Erika von Euw; Narsis Attar; Charles Ng; Connie Chu; Deliang Guo; Ramin Nazarian; Bartosz Chmielowski; John A. Glaspy; Begonya Comin-Anduix; Paul S. Mischel; Roger S. Lo; Antoni Ribas

Background The sustained clinical activity of the BRAF inhibitor vemurafenib (PLX4032/RG7204) in patients with BRAFV600 mutant melanoma is limited primarily by the development of acquired resistance leading to tumor progression. Clinical trials are in progress using MEK inhibitors following disease progression in patients receiving BRAF inhibitors. However, the PI3K/AKT pathway can also induce resistance to the inhibitors of MAPK pathway. Methodology/Principal Findings The sensitivity to vemurafenib or the MEK inhibitor AZD6244 was tested in sensitive and resistant human melanoma cell lines exploring differences in activation-associated phosphorylation levels of major signaling molecules, leading to the testing of co-inhibition of the AKT/mTOR pathway genetically and pharmacologically. There was a high degree of cross-resistance to vemurafenib and AZD6244, except in two vemurafenib-resistant cell lines that acquired a secondary mutation in NRAS. In other cell lines, acquired resistance to both drugs was associated with persistence or increase in activity of AKT pathway. siRNA-mediated gene silencing and combination therapy with an AKT inhibitor or rapamycin partially or completely reversed the resistance. Conclusions/Significance Primary and acquired resistance to vemurafenib in these in vitro models results in frequent cross resistance to MEK inhibitors, except when the resistance is the result of a secondary NRAS mutation. Resistance to BRAF or MEK inhibitors is associated with the induction or persistence of activity within the AKT pathway in the presence of these drugs. This resistance can be potentially reversed by the combination of a RAF or MEK inhibitor with an AKT or mTOR inhibitor. These combinations should be available for clinical testing in patients progressing on BRAF inhibitors.


Journal of Clinical Investigation | 2014

WNT5A enhances resistance of melanoma cells to targeted BRAF inhibitors

Jamie N. Anastas; Rima M. Kulikauskas; Tigist Tamir; Helen Rizos; Erika von Euw; Pei Tzu Yang; Hsiao Wang Chen; Lauren E. Haydu; Rachel A. Toroni; Olivia M. Lucero; Andy J. Chien; Randall T. Moon

About half of all melanomas harbor a mutation that results in a constitutively active BRAF kinase mutant (BRAF(V600E/K)) that can be selectively inhibited by targeted BRAF inhibitors (BRAFis). While patients treated with BRAFis initially exhibit measurable clinical improvement, the majority of patients eventually develop drug resistance and relapse. Here, we observed marked elevation of WNT5A in a subset of tumors from patients exhibiting disease progression on BRAFi therapy. WNT5A transcript and protein were also elevated in BRAFi-resistant melanoma cell lines generated by long-term in vitro treatment with BRAFi. RNAi-mediated reduction of endogenous WNT5A in melanoma decreased cell growth, increased apoptosis in response to BRAFi challenge, and decreased the activity of prosurvival AKT signaling. Conversely, overexpression of WNT5A promoted melanoma growth, tumorigenesis, and activation of AKT signaling. Similarly to WNT5A knockdown, knockdown of the WNT receptors FZD7 and RYK inhibited growth, sensitized melanoma cells to BRAFi, and reduced AKT activation. Together, these findings suggest that chronic BRAF inhibition elevates WNT5A expression, which promotes AKT signaling through FZD7 and RYK, leading to increased growth and therapeutic resistance. Furthermore, increased WNT5A expression in BRAFi-resistant melanomas correlates with a specific transcriptional signature, which identifies potential therapeutic targets to reduce clinical BRAFi resistance.


Journal of Translational Medicine | 2009

CTLA4 blockade increases Th17 cells in patients with metastatic melanoma

Erika von Euw; Thinle Chodon; Narsis Attar; Jason Jalil; Richard C. Koya; Begonya Comin-Anduix; Antoni Ribas

BackgroundTh17 cells are CD4+ cells that produce interleukin 17 (IL-17) and are potent inducers of tissue inflammation and autoimmunity. We studied the levels of this T cell subset in peripheral blood of patients treated with the anti-CTLA4 antibody tremelimumab since its major dose limiting toxicities are inflammatory and autoimmune in nature.MethodsPeripheral blood mononuclear cells (PBMC) were collected before and after receiving tremelimumab within two clinical trials, one with tremelimumab alone (21 patients) and another together with autologous dendritic cells (DC) pulsed with the melanoma epitope MART-126–35 (6 patients). Cytokines were quantified directly in plasma from patients and after in vitro stimulation of PBMC. We also quantified IL-17 cytokine-producing cells by intracellular cytokine staining (ICS).ResultsThere were no significant changes in 13 assayed cytokines, including IL-17, when analyzing plasma samples obtained from patients before and after administration of tremelimumab. However, when PBMC were activated in vitro, IL-17 cytokine in cell culture supernatant and Th17 cells, detected as IL-17-producing CD4 cells by ICS, significantly increased in post-dosing samples. There were no differences in the levels of Th17 cells between patients with or without an objective tumor response, but samples from patients with inflammatory and autoimmune toxicities during the first cycle of therapy had a significant increase in Th17 cells.ConclusionThe anti-CTLA4 blocking antibody tremelimumab increases Th17 cells in peripheral blood of patients with metastatic melanoma. The relation between increases in Th17 cells and severe autoimmune toxicity after CTLA4 blockade may provide insights into the pathogenesis of anti-CTLA4-induced toxicities.Trial RegistrationClinical trial registration numbers: NCT0090896 and NCT00471887


Proceedings of the National Academy of Sciences of the United States of America | 2015

MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells

Diego Ploper; Vincent F. Taelman; Lidia Robert; Brian S. Perez; Björn Titz; Hsiao-Wang Chen; Thomas G. Graeber; Erika von Euw; Antoni Ribas; Edward M. De Robertis

Significance MITF, a master regulator of melanocytes and a major melanoma oncogene amplified in 30-40% of melanomas, determines proliferative or invasive phenotypes. Previously unrecognized as a driver of lysosomal biogenesis, we found that MITF expression correlates with many lysosomal genes and generates late endosomes that are not functional in proteolysis. This accumulation of incomplete organelles expands the late endosomal compartment, enhancing Wnt signaling by entrapping the Wnt machinery in multivesicular bodies. Wnt signaling can stabilize many proteins besides β-catenin. Our study identifies MITF as an oncogenic protein stabilized by Wnt, and describes three novel glycogen synthase kinase 3-regulated phosphorylation sites in this oncogene. This study deepens our knowledge on proliferative stages of melanoma: MITF, multivesicular bodies, and Wnt may form a feedback loop that drives proliferation. Canonical Wnt signaling plays an important role in development and disease, regulating transcription of target genes and stabilizing many proteins phosphorylated by glycogen synthase kinase 3 (GSK3). We observed that the MiT family of transcription factors, which includes the melanoma oncogene MITF (micropthalmia-associated transcription factor) and the lysosomal master regulator TFEB, had the highest phylogenetic conservation of three consecutive putative GSK3 phosphorylation sites in animal proteomes. This finding prompted us to examine the relationship between MITF, endolysosomal biogenesis, and Wnt signaling. Here we report that MITF expression levels correlated with the expression of a large subset of lysosomal genes in melanoma cell lines. MITF expression in the tetracycline-inducible C32 melanoma model caused a marked increase in vesicular structures, and increased expression of late endosomal proteins, such as Rab7, LAMP1, and CD63. These late endosomes were not functional lysosomes as they were less active in proteolysis, yet were able to concentrate Axin1, phospho-LRP6, phospho-β-catenin, and GSK3 in the presence of Wnt ligands. This relocalization significantly enhanced Wnt signaling by increasing the number of multivesicular bodies into which the Wnt signalosome/destruction complex becomes localized upon Wnt signaling. We also show that the MITF protein was stabilized by Wnt signaling, through the novel C-terminal GSK3 phosphorylations identified here. MITF stabilization caused an increase in multivesicular body biosynthesis, which in turn increased Wnt signaling, generating a positive-feedback loop that may function during the proliferative stages of melanoma. The results underscore the importance of misregulated endolysosomal biogenesis in Wnt signaling and cancer.


Journal of Translational Medicine | 2011

Combination therapy with vemurafenib (PLX4032/RG7204) and metformin in melanoma cell lines with distinct driver mutations

Franziska Niehr; Erika von Euw; Narsis Attar; Deliang Guo; Doug Matsunaga; Hooman Sazegar; Charles Ng; John A. Glaspy; Juan A Recio; Roger S. Lo; Paul S. Mischel; Begonya Comin-Anduix; Antoni Ribas

BackgroundA molecular linkage between the MAPK and the LKB1-AMPK energy sensor pathways suggests that combined MAPK oncogene inhibition and metabolic modulation of AMPK would be more effective than either manipulation alone in melanoma cell lines.Materials and methodsThe combination of the BRAF inhibitor vemurafenib (formerly PLX4032) and metformin were tested against a panel of human melanoma cell lines with defined BRAF and NRAS mutations for effects on viability, cell cycle and apoptosis. Signaling molecules in the MAPK, PI3K-AKT and LKB1-AMPK pathways were studied by Western blot.ResultsSingle agent metformin inhibited proliferation in 12 out of 19 cell lines irrespective of the BRAF mutation status, but in one NRASQ61K mutant cell line it powerfully stimulated cell growth. Synergistic anti-proliferative effects of the combination of metformin with vemurafenib were observed in 6 out of 11 BRAFV600E mutants, including highly synergistic effects in two BRAFV600E mutant melanoma cell lines. Antagonistic effects were noted in some cell lines, in particular in BRAFV600E mutant cell lines resistant to single agent vemurafenib. Seven out of 8 BRAF wild type cell lines showed marginally synergistic anti-proliferative effects with the combination, and one cell line had highly antagonistic effects with the combination. The differential effects were not dependent on the sensitivity to each drug alone, effects on cell cycle or signaling pathways.ConclusionsThe combination of vemurafenib and metformin tended to have stronger anti-proliferative effects on BRAFV600E mutant cell lines. However, determinants of vemurafenib and metformin synergism or antagonism need to be understood with greater detail before any potential clinical utility of this combination.


Clinical Cancer Research | 2014

Targeting PI3K/mTOR Overcomes Resistance to HER2-Targeted Therapy Independent of Feedback Activation of AKT

Neil A. O'Brien; Karen McDonald; Luo Tong; Erika von Euw; Ondrej Kalous; Dylan Conklin; Sara A. Hurvitz; Emmanuelle di Tomaso; Christian Schnell; Ronald Richard Linnartz; Richard S. Finn; Samit Hirawat; Dennis J. Slamon

Purpose: Altered PI3K/mTOR signaling is implicated in the pathogenesis of a number of breast cancers, including those resistant to hormonal and HER2-targeted therapies. Experimental Design: The activity of four classes of PI3K/mTOR inhibitory molecules, including a pan-PI3K inhibitor (NVP-BKM120), a p110α isoform–specific PI3K inhibitor (NVP-BYL719), an mTORC1-specific inhibitor (NVP-RAD001), and a dual PI3K/mTORC1/2 inhibitor (NVP-BEZ235), was evaluated both in vitro and in vivo against a panel of 48 human breast cell lines. Results: Each agent showed significant antiproliferative activity in vitro, particularly in luminal estrogen receptor–positive and/or HER2+ cell lines harboring PI3K mutations. In addition, monotherapy with each of the four inhibitors led to significant inhibition of in vivo growth in HER2+ breast cancer models. The PI3K/mTOR pathway inhibitors were also effective in overcoming both de novo and acquired trastuzumab resistance in vitro and in vivo. Furthermore, combined targeting of HER2 and PI3K/mTOR leads to increased apoptosis in vitro and induction of tumor regression in trastuzumab-resistant xenograft models. Finally, as previously shown, targeting mTORC1 alone with RAD001 leads to consistent feedback activation of AKT both in vitro and in vivo, whereas the dual mTOR1–2/PI3K inhibitor BEZ235 eliminates this feedback loop. However, despite these important signaling differences, both molecules are equally effective in inhibiting tumor cell proliferation both in vitro and in vivo. Conclusion: These preclinical data support the findings of the BOLERO 3 trial that shows that targeting of the PI3K/mTOR pathway in combination with trastuzumab is beneficial in trastuzumab-resistant breast cancer. Clin Cancer Res; 20(13); 3507–20. ©2014 AACR.


Molecular Cancer | 2012

Antitumor effects of the investigational selective MEK inhibitor TAK733 against cutaneous and uveal melanoma cell lines

Erika von Euw; Mohammad Atefi; Narsis Attar; Connie Chu; Sybil Zachariah; Barry L. Burgess; Stephen Mok; Charles Ng; Deborah J.L. Wong; Bartosz Chmielowski; David I. Lichter; Richard C. Koya; Tara A. McCannel; Elena Izmailova; Antoni Ribas

BackgroundTAK733 is a novel allosteric, non-ATP-binding, inhibitor of the BRAF substrates MEK-1/2.MethodsThe growth inhibitory effects of TAK733 were assessed in a panel of 27 cutaneous and five uveal melanoma cell lines genotyped for driver oncogenic mutations. Flow cytometry, Western blots and metabolic tracer uptake assays were used to characterize the changes induced by exposure to TAK733.ResultsFourteen cutaneous melanoma cell lines with different driver mutations were sensitive to the antiproliferative effects of TAK733, with a higher proportion of BRAFV600E mutant cell lines being highly sensitive with IC50s below 1 nM. The five uveal melanoma cell lines had GNAQ or GNA11 mutations and were either moderately or highly sensitive to TAK733. The tested cell lines wild type for NRAS, BRAF, GNAQ and GNA11 driver mutations were moderately to highly resistant to TAK733. TAK733 led to a decrease in pERK and G1 arrest in most of these melanoma cell lines regardless of their origin, driver oncogenic mutations and in vitro sensitivity to TAK733. MEK inhibition resulted in increase in pMEK more prominently in NRASQ61L mutant and GNAQ mutant cell lines than in BRAFV600E mutant cell lines. Uptake of the metabolic tracers FDG and FLT was inhibited by TAK733 in a manner that closely paralleled the in vitro sensitivity assays.ConclusionsThe MEK inhibitor TAK733 has antitumor properties in melanoma cell lines with different oncogenic mutations and these effects could be detectable by differential metabolic tracer uptake.


Journal of Thoracic Oncology | 2013

Antiestrogen fulvestrant enhances the antiproliferative effects of epidermal growth factor receptor inhibitors in human non-small-cell lung cancer.

Edward B. Garon; Richard J. Pietras; Richard S. Finn; Naeimeh Kamranpour; Sharon Pitts; Diana C. Márquez-Garbán; Amrita J. Desai; Judy Dering; Wylie Hosmer; Erika von Euw; Steven M. Dubinett; Dennis J. Slamon

Introduction: Estrogen receptor (ER) signaling and its interaction with epidermal growth factor receptor (EGFR) is a potential therapeutic target in non–small-cell lung cancer (NSCLC). To explore cross-communication between ER and EGFR, we have correlated ER pathway gene and protein expression profiles and examined effects of antiestrogens with or without EGFR inhibitors in preclinical models of human NSCLC. Methods: We evaluated 54 NSCLC cell lines for growth inhibition with EGFR inhibitors, antiestrogen treatment, or the combination. Each line was evaluated for baseline ER pathway protein expression. The majority were also evaluated for baseline ER pathway gene expression. Human NSCLC xenografts were evaluated for effects of inhibition of each pathway, either individually, or in combination. Results: The specific antiestrogen fulvestrant has modest single agent activity in vitro, but in many lines, fulvestrant adds to effects of EGFR inhibitors, including synergy in the EGFR-mutant, erlotinib-resistant H1975 line. ER&agr;, ER&bgr;, progesterone receptor-A, progesterone receptor-B, and aromatase proteins are expressed in all lines to varying degrees, with trends toward lower aromatase in more sensitive cell lines. Sensitivity to fulvestrant correlates with greater baseline ER&agr; gene expression. Tumor stability is achieved in human tumor xenografts with either fulvestrant or EGFR inhibitors, but tumors regress significantly when both pathways are inhibited. Conclusions: These data provide a rationale for further investigation of the antitumor activity of combined therapy with antiestrogen and anti-EGFR agents in the clinic. Future work should also evaluate dual ER and EGFR inhibition in the setting of secondary resistance to EGFR inhibition.


Cancer Cell | 2017

Characterization of Human Cancer Cell Lines by Reverse-phase Protein Arrays

Jun Li; Wei Zhao; Rehan Akbani; Wenbin Liu; Zhenlin Ju; Shiyun Ling; Christopher P. Vellano; Paul Roebuck; Qinghua Yu; A. Karina Eterovic; Lauren Averett Byers; Michael A. Davies; Wanleng Deng; Y.N. Vashisht Gopal; Guo Chen; Erika von Euw; Dennis J. Slamon; Dylan Conklin; John V. Heymach; Adi F. Gazdar; John D. Minna; Jeffrey N. Myers; Yiling Lu; Gordon B. Mills; Han Liang

Cancer cell lines are major model systems for mechanistic investigation and drug development. However, protein expression data linked to high-quality DNA, RNA, and drug-screening data have not been available across a large number of cancer cell lines. Using reverse-phase protein arrays, we measured expression levels of ∼230 key cancer-related proteins in >650 independent cell lines, many of which have publically available genomic, transcriptomic, and drug-screening data. Our dataset recapitulates the effects of mutated pathways on protein expression observed in patient samples, and demonstrates that proteins and particularly phosphoproteins provide information for predicting drug sensitivity that is not available from the corresponding mRNAs. We also developed a user-friendly bioinformatic resource, MCLP, to help serve the biomedical research community.

Collaboration


Dive into the Erika von Euw's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dylan Conklin

University of California

View shared research outputs
Top Co-Authors

Avatar

Antoni Ribas

University of California

View shared research outputs
Top Co-Authors

Avatar

Narsis Attar

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ondrej Kalous

University of California

View shared research outputs
Top Co-Authors

Avatar

Richard C. Koya

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge