Erika Yorida
University of British Columbia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Erika Yorida.
The New England Journal of Medicine | 2009
Sohrab P. Shah; Martin Köbel; Janine Senz; Ryan D. Morin; Blaise Clarke; Kimberly C. Wiegand; Gillian Leung; Abdalnasser Zayed; Erika Mehl; Steve E. Kalloger; Mark Sun; Ryan Giuliany; Erika Yorida; Steven J.M. Jones; Richard Varhol; Kenneth D. Swenerton; Dianne Miller; Philip B. Clement; Colleen Crane; Jason Madore; Diane Provencher; Peter C. K. Leung; Anna deFazio; Jaswinder Khattra; Gulisa Turashvili; Yongjun Zhao; Thomas Zeng; J.N. Mark Glover; Barbara C. Vanderhyden; Chengquan Zhao
BACKGROUND Granulosa-cell tumors (GCTs) are the most common type of malignant ovarian sex cord-stromal tumor (SCST). The pathogenesis of these tumors is unknown. Moreover, their histopathological diagnosis can be challenging, and there is no curative treatment beyond surgery. METHODS We analyzed four adult-type GCTs using whole-transcriptome paired-end RNA sequencing. We identified putative GCT-specific mutations that were present in at least three of these samples but were absent from the transcriptomes of 11 epithelial ovarian tumors, published human genomes, and databases of single-nucleotide polymorphisms. We confirmed these variants by direct sequencing of complementary DNA and genomic DNA. We then analyzed additional tumors and matched normal genomic DNA, using a combination of direct sequencing, analyses of restriction-fragment-length polymorphisms, and TaqMan assays. RESULTS All four index GCTs had a missense point mutation, 402C-->G (C134W), in FOXL2, a gene encoding a transcription factor known to be critical for granulosa-cell development. The FOXL2 mutation was present in 86 of 89 additional adult-type GCTs (97%), in 3 of 14 thecomas (21%), and in 1 of 10 juvenile-type GCTs (10%). The mutation was absent in 49 SCSTs of other types and in 329 unrelated ovarian or breast tumors. CONCLUSIONS Whole-transcriptome sequencing of four GCTs identified a single, recurrent somatic mutation (402C-->G) in FOXL2 that was present in almost all morphologically identified adult-type GCTs. Mutant FOXL2 is a potential driver in the pathogenesis of adult-type GCTs.
Oncogene | 2005
Brent W. Sutherland; Jill E. Kucab; Joyce Wu; Cathy Lee; Maggie Cheang; Erika Yorida; Dmitry Turbin; Shoukat Dedhar; Colleen C. Nelson; Michael Pollak; H. Leighton Grimes; Kathy D. Miller; Sunil Badve; David Huntsman; C Blake-Gilks; Min Chen; Catherine J. Pallen; Sandra E. Dunn
Akt/PKB is a serine/threonine kinase that promotes tumor cell growth by phosphorylating transcription factors and cell cycle proteins. There is particular interest in finding tumor-specific substrates for Akt to understand how this protein functions in cancer and to provide new avenues for therapeutic targeting. Our laboratory sought to identify novel Akt substrates that are expressed in breast cancer. In this study, we determined that activated Akt is positively correlated with the protein expression of the transcription/translation factor Y-box binding protein-1 (YB-1) in primary breast cancer by screening tumor tissue microarrays. We therefore questioned whether Akt and YB-1 might be functionally linked. Herein, we illustrate that activated Akt binds to and phosphorylates the YB-1 cold shock domain at Ser102. We then addressed the functional significance of disrupting Ser102 by mutating it to Ala102. Following the stable expression of Flag:YB-1 and Flag:YB-1 (Ala102) in MCF-7 cells, we observed that disruption of the Akt phosphorylation site on YB-1 suppressed tumor cell growth in soft agar and in monolayer. This correlated with an inhibition of nuclear translocation by the YB-1(Ala102) mutant. In conclusion, YB-1 is a new Akt substrate and disruption of this specific site inhibits tumor cell growth.
Applied Immunohistochemistry & Molecular Morphology | 2004
N. H. C. Au; Allen M. Gown; Maggie Cheang; David Huntsman; Erika Yorida; W. M. Elliott; J. Flint; John C. English; Gilks Cb; H. L. Grimes
p63 is a recently discovered member of the p53 family that has been shown to be important in the development of epithelial tissues. p63 may also play a role in squamous cell carcinomas of the lung, head and neck, and cervix, and its expression is increased in these tumors. The purpose of this study was to investigate the expression of p63 in a broad spectrum of histologic types of lung tumors. A total of 441 cases of primary lung tumors with follow-up data were identified, and the paraffin-embedded tissue blocks were used to construct a duplicate core tissue microarray. After review of the tissue cores, 408 cases, consisting of 123 squamous cell carcinomas, 93 adenocarcinomas, 68 large cell carcinomas, 68 classic carcinoids, 31 atypical carcinoids, 11 large cell neuroendocrine carcinomas, and 14 small cell carcinomas, were adequate for analysis. Immunohistochemistry was performed at 2 different laboratories using monoclonal antibody 4A4 to detect the expression of p63, using different staining protocols. p53 expression was also studied with immunohistochemistry using monoclonal antibody DO-7. Kaplan-Meier curves were plotted to compare the survival of p63-expressing versus nonexpressing tumors. A large proportion of squamous cell carcinomas expressed p63 (96.9%), most showing strong positive nuclear immunoreactivity. Expression in other nonsmall cell lung cancers was also present. Thirty percent of adenocarcinomas and 37% of large cell carcinomas showed p63 expression. In the neuroendocrine tumors, an increasing proportion of tumors stained for p63 as tumor grade increased; 1.9% of classic carcinoids, 30.8% of atypical carcinoids, 50% of large cell neuroendocrine carcinomas, and 76.9% of small cell carcinomas were positive. Approximately half of the positively staining neuroendocrine cases showed strong staining. Expression of p63 was of prognostic significance in neuroendocrine tumors (P < 0.0001), with higher-grade tumors more likely to express p63. Correlation between p63 and p53 expression was not observed (P = 0.18) in nonsmall cell lung cancer; however, a significant correlation between the 2 markers was found in neuroendocrine tumors (P < 0.0001). p63 staining was repeated with a different staining protocol, yielding similar results overall but a lower percentage of positive cases (34.2% vs. 48.4% of tumors positive). In conclusion, p63 expression is consistently expressed in squamous cell carcinoma in the lung, but is also expressed in a subset of adenocarcinomas and large cell carcinomas. Pulmonary neuroendocrine tumors also show p63 staining in some instances, particularly in higher-grade tumors, and the majority of small cell carcinomas are p63-positive. These results suggest that p63 may be involved in oncogenesis in a broader range of tumors than was previously thought.
Cancer Research | 2006
Joyce Wu; Cathy Lee; Daniel Yokom; Helen Jiang; Maggie Cheang; Erika Yorida; Dmitry Turbin; Isabelle M. Berquin; Peter R. Mertens; Thomas Iftner; C. Blake Gilks; Sandra E. Dunn
The overexpression of the epidermal growth factor receptor (EGFR) and HER-2 underpin the growth of aggressive breast cancer; still, it is unclear what governs the regulation of these receptors. Our laboratories recently determined that the Y-box binding protein-1 (YB-1), an oncogenic transcription/translation factor, induced breast tumor cell growth in monolayer and in soft agar. Importantly, mutating YB-1 at Ser(102), which resides in the DNA-binding domain, prevented growth induction. We reasoned that the underlying cause for growth attenuation by YB-1(Ser(102)) is through the regulation of EGFR and/or HER-2. The initial link between YB-1 and these receptors was sought by screening primary tumor tissue microarrays. We determined that YB-1 (n = 389 cases) was positively associated with EGFR (P < 0.001, r = 0.213), HER-2 (P = 0.008, r = 0.157), and Ki67 (P < 0.0002, r = 0.219). It was inversely linked to the estrogen receptor (P < 0.001, r = -0.291). Overexpression of YB-1 in a breast cancer cell line increased HER-2 and EGFR. Alternatively, mutation of YB-1 at Ser(102) > Ala(102) prevented the induction of these receptors and rendered the cells less responsive to EGF. The mutant YB-1 protein was also unable to optimally bind to the EGFR and HER-2 promoters based on chromatin immunoprecipitation. Furthermore, knocking down YB-1 with small interfering RNA suppressed the expression of EGFR and HER-2. This was coupled with a decrease in tumor cell growth. In conclusion, YB-1(Ser(102)) is a point of molecular vulnerability for maintaining the expression of EGFR and HER-2. Targeting YB-1 or more specifically YB-1(Ser(102)) are novel approaches to inhibiting the expression of these receptors to ultimately suppress tumor cell growth.
The Journal of Pathology | 2004
N. H. C. Au; Maggie Cheang; David Huntsman; Erika Yorida; Andrew J. Coldman; W. M. Elliott; G. Bebb; J. Flint; John C. English; Gilks Cb; H. L. Grimes
This study has investigated a panel of immunomarkers in non‐small cell lung carcinoma (NSCLC). Unsupervised hierarchical clustering analysis was used to investigate the possibility of identifying different subgroups in NSCLC based on their molecular expression profile rather than morphological features. A tissue microarray consisting of 284 cases of NSCLC was constructed. Immunohistochemistry was used to detect the presence of 18 biomarkers including synaptophysin, chromogranin, bombesin, NSE, GFI1, ASH‐1, p53, p63, p21, p27, E2F‐1, cyclin D1, Bcl‐2, TTF‐1, CEA, HER2/neu, cytokeratin 5/6, and pancytokeratin. Univariate analysis of all 18 markers for prognostic significance was performed. Immunohistochemical scoring data for NSCLC were analysed by unsupervised hierarchical clustering analysis. Kaplan–Meier survival curves were plotted for the different cluster groups of lung tumours identified by this method. Analysis of the three different World Health Organization (WHO) subtypes (adenocarcinoma, squamous cell carcinoma, large cell carcinoma) of NSCLC individually showed that different markers were significant in different subtypes. For example, p53 and p63 were significant for squamous cell carcinoma (p = 0.007 and p = 0.03, respectively), whereas cyclin D1 and HER2/neu were significant prognostic markers for adenocarcinoma (p = 0.025 and p = 0.015, respectively). These markers were not significant prognostic predictors for NSCLC as a group. Hierarchical clustering analysis of NSCLC produced four separate cluster groups, although the vast majority of cases were found in two cluster groups, one dominated by squamous cell carcinoma and the other by adenocarcinoma. The clinical outcomes of cases from the four cluster groups were not significantly different. Prognostic indicators vary between different morphological subtypes of NSCLC. Unsupervised hierarchical clustering analysis, based on an extended immunoprofile, identifies two main cluster groups corresponding to adenocarcinoma and squamous cell carcinoma; cases of large cell carcinomas are assigned to one of these two groups based on their molecular phenotype. Copyright
Cancer | 2005
Sam M. Wiseman; Nikita Makretsov; Torsten O. Nielsen; Blake Gilks; Erika Yorida; Maggie Cheang; Dmitry Turbin; Karen A. Gelmon; David Huntsman
The clinical significance of coexpression of type 1 growth factor receptor (T1GFR) family members remains largely unknown. The objective of the current study was to determine the frequency and the possible prognostic effect of coexpression of HER‐1, HER‐2, HER‐3, and HER‐4 by breast carcinoma.
Breast Cancer Research | 2005
Jill E. Kucab; Cathy Lee; Ching-Shih Chen; Jiuxiang Zhu; C. Blake Gilks; Maggie Cheang; David Huntsman; Erika Yorida; Joanne T. Emerman; Michael Pollak; Sandra E. Dunn
IntroductionPhosphorylated Akt (P-Akt) is an attractive molecular target because it contributes to the development of breast cancer and confers resistance to conventional therapies. Akt also serves as a signalling intermediate for receptors such as human epidermal growth factor receptor (HER)-2, which is overexpressed in 30% of breast cancers; therefore, inhibitors to this pathway are being sought. New celecoxib analogues reportedly inhibit P-Akt in prostate cancer cells. We therefore examined the potential of these compounds in the treatment of breast cancer. The analogues were characterized in MDA-MB-453 cells because they overexpress HER-2 and have very high levels of P-Akt.MethodsTo evaluate the effect of the celecoxib analogues, immunoblotting was used to identify changes in the phosphorylation of Akt and its downstream substrates glycogen synthase kinase (GSK) and 4E binding protein (4EBP-1). In vitro kinase assays were then used to assess the effect of the drugs on Akt activity. Cell death was evaluated by poly(ADP-ribose) polymerase cleavage, nucleosomal fragmentation and MTS assays. Finally, tumour tissue microarrays were screened for P-Akt and HER-2 expression.ResultsOSU-03012 and OSU-O3013 inhibited P-Akt and its downstream signalling through 4EBP-1 and GSK at concentrations well below that of celecoxib. Disruption of P-Akt was followed by induction of apoptosis and more than 90% cell death. We also noted that the cytotoxicity of the celecoxib analogues was not significantly affected by serum. In contrast, the presence of 5% serum protected cells from celecoxib induced death. Thus, the structural modification of the celecoxib analogues increased P-Akt inhibition and enhanced the bioavailability of the drugs in vitro. To assess how many patients may potentially benefit from such drugs we screened tumour tissue microarrays. P-Akt was highly activated in 58% (225/390) of cases, whereas it was only similarly expressed in 35% (9/26) of normal breast tissues. Furthermore, HER-2 positive tumours expressed high levels of P-Akt (P < 0.01), supporting in vitro signal transduction.ConclusionWe determined that Celecoxib analogues are potent inhibitors of P-Akt signalling and kill breast cancer cells that overexpress HER-2. We also defined an association between HER-2 and P-Akt in primary breast tissues, suggesting that these inhibitors may benefit patients in need of new treatment options.
Journal of Medical Genetics | 2011
Kasmintan A. Schrader; Serena Masciari; Niki Boyd; Clara Salamanca; Janine Senz; Darren N. Saunders; Erika Yorida; Sarah Maines-Bandiera; Pardeep Kaurah; Nadine Tung; Mark E. Robson; Paula D. Ryan; Olufunmilayo I. Olopade; Susan M. Domchek; James M. Ford; Claudine Isaacs; Powel H. Brown; Judith Balmaña; A. R. Razzak; Penelope Miron; K. Coffey; Mb Terry; Esther M. John; Irene L. Andrulis; Jo Knight; Frances P. O'Malley; Mark J. Daly; P. Bender; Richard G. Moore; Melissa C. Southey
Background Germline mutations in CDH1 are associated with hereditary diffuse gastric cancer; lobular breast cancer also occurs excessively in families with such condition. Method To determine if CDH1 is a susceptibility gene for lobular breast cancer in women without a family history of diffuse gastric cancer, germline DNA was analysed for the presence of CDH1 mutations in 318 women with lobular breast cancer who were diagnosed before the age of 45 years or had a family history of breast cancer and were not known, or known not, to be carriers of germline mutations in BRCA1 or BRCA2. Cases were ascertained through breast cancer registries and high-risk cancer genetic clinics (Breast Cancer Family Registry, the kConFab and a consortium of breast cancer genetics clinics in the United States and Spain). Additionally, Multiplex Ligation-dependent Probe Amplification was performed for 134 cases to detect large deletions. Results No truncating mutations and no large deletions were detected. Six non-synonymous variants were found in seven families. Four (4/318 or 1.3%) are considered to be potentially pathogenic through in vitro and in silico analysis. Conclusion Potentially pathogenic germline CDH1 mutations in women with early-onset or familial lobular breast cancer are at most infrequent.
Oncogene | 2005
Leah M Prentice; Ashleen Shadeo; Valia S. Lestou; Melinda A. Miller; Ronald J deLeeuw; Nikita Makretsov; Dmitry Turbin; Lindsay Brown; Nicol Macpherson; Erika Yorida; Maggie Cheang; John Bentley; Stephen Chia; Torsten O. Nielsen; C. Blake Gilks; Wan L. Lam; David Huntsman
Rearrangements of the neuregulin (NRG1) gene have been implicated in breast carcinoma oncogenesis. To determine the frequency and clinical significance of NRG1 aberrations in clinical breast tumors, a breast cancer tissue microarray was screened for NRG1 aberrations by fluorescent in situ hybridization (FISH) using a two-color split-apart probe combination flanking the NRG1 gene. Rearrangements of NRG1 were identified in 17/382 cases by FISH, and bacterial artificial chromosome array comparative genomic hybridization was applied to five of these cases to further map the chromosome 8p abnormalities. In all five cases, there was a novel amplicon centromeric to NRG1 with a minimum common region of amplification encompassing two genes, SPFH2 and FLJ14299. Subsequent FISH analysis for the novel amplicon revealed that it was present in 63/262 cases. Abnormalities of NRG1 did not correlate with patient outcome, but the novel amplicon was associated with poor prognosis in univariate analysis, and in multivariate analysis was of prognostic significance independent of nodal status, tumor grade, estrogen receptor status, and human epidermal growth factor receptor (HER)2 overexpression. Of the two genes in the novel amplicon, expression of SPFH2 correlated most significantly with amplification. This amplicon may emerge as a result of breakpoints and chromosomal rearrangements within the NRG1 locus.
Modern Pathology | 2006
Dmitry Turbin; Maggie Cheang; Chris Bajdik; Karen A. Gelmon; Erika Yorida; Alessandro De Luca; Torsten O. Nielsen; David Huntsman; C. Blake Gilks
The protein encoded by the MDM2 oncogene inhibits the function of p53, leading to increased cell growth, avoidance of apoptosis, tolerance of genetic instability, and resistance to chemotherapy. The present study was performed to evaluate the relationship between MDM2 protein expression and survival in breast carcinoma. Two series of cases were used in this study: the first to identify the cutoff to be used in the interpretation of MDM2 immunostaining and perform preliminary survival analysis, and a second, independent series, to validate the findings from the first series and to perform multivariate analysis. For both series, archival sections of tissue microarrays were stained with anti-MDM2 antibody (NeoMarkers, Fremont, CA, USA) and MDM2 staining intensity was scored semiquantitatively. In the first series, 49 of 362 (14%) interpretable cases were positive for MDM2 expression, with 35 (10%) showing weak positivity and 14 (4%) strong positivity. Patients with MDM2-positive tumours had a significantly worse disease-specific survival than patients with MDM2-negative tumours (P=0.0022, 10-year DSS 61% (95% CI: 45–73) vs 73% (95% CI: 67–77)). No significant difference in survival was observed between patients with strongly and weakly MDM2-positive tumours (P=0.3). Accordingly, in the independent validation series weak and strong MDM2 positivity were combined and considered to be MDM2 positive. MDM2 expression was seen in 230/1747 (13%) interpretable cases in this series, with a significant difference (P<0.0001) in DSS between MDM2-negative and MDM2-positive cases (10 year DSS 58% (95% CI: 51–64) vs 73% (95% CI: 70–75)). MDM2 was an independent prognostic marker (HR=1.35, P=0.02) in a Cox regression model including MDM2 expression, tumour grade, nodal status, ER status and tumour size. Immunohistochemical studies of MDM2 in more than 2000 breast carcinomas show that MDM2 is an independent negative prognostic marker.