Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eriko Kudo is active.

Publication


Featured researches published by Eriko Kudo.


Cancer Science | 2012

Antitumor effect of berberine against primary effusion lymphoma via inhibition of NF-κB pathway.

Hiroki Goto; Ryusho Kariya; Masako Shimamoto; Eriko Kudo; Manabu Taura; Harutaka Katano; Seiji Okada

Primary effusion lymphoma (PEL) is an infrequent and distinct entity among the aggressive non‐Hodgkin B cell lymphomas that occurs predominantly in patients with advanced AIDS. It shows serous lymphomatous effusion in body cavities, and is resistant to conventional chemotherapy with a poor prognosis. Thus, the optimal treatment for PEL is not well defined and there is a need for novel agents. PEL has been recognized as the tumor caused by Kaposi sarcoma‐associated herpes virus/human herpes virus‐8 (KSHV/HHV‐8), and nuclear factor (NF)‐κB activation plays a critical role in the survival and growth of PEL cells. In this study, we assessed the antitumor effect of berberine, a naturally occurring isoquinoline alkaloid, on this pathway. The methylthiotetrazole assay showed that cell proliferation in the PEL cell lines was inhibited by berberine. Berberine also induced caspase‐dependent apoptosis and suppressed NF‐κB activity by inhibiting IκB kinase (IKK) phosphorylation, IκB phosphorylation and IκB degradation, upstream targets of the NF‐κB pathway, in PEL cells. In a xenograft mouse model that showed ascites and diffuse organ invasion of PEL cells, treatment with berberine inhibited the growth and invasion of PEL cells significantly compared with untreated mice. These results show that the suppression of NF‐κB is a molecular target for treating PEL, and berberine is a potential antitumor agent for PEL. (Cancer Sci 2012; 103: 775–781)


Free Radical Biology and Medicine | 2013

Comparative analysis of ER stress response into HIV protease inhibitors: Lopinavir but not darunavir induces potent ER stress response via ROS/JNK pathway

Manabu Taura; Ryusho Kariya; Eriko Kudo; Hiroki Goto; Takao Iwawaki; Masayuki Amano; Mary Ann Suico; Hirofumi Kai; Hiroaki Mitsuya; Seiji Okada

HIV protease inhibitor (PI)-induced ER stress has been associated with adverse effects. Although it is a serious clinical problem for HIV/AIDS patients, comparative analyses of ER stress induction by clinically used PIs have rarely been done. Especially, there is no report on the differential ER stress response between lopinavir (LPV) and darunavir (DRV), although these PIs are the most clinically used PIs. We show here that LPV induces the most potent CHOP expression, ER stress marker, among the 9 Food and Drug Administration (FDA)-approved PIs in human peripheral blood mononuclear cells, several human epithelial cells, and mouse embryonic fibroblasts. LPV induced the most potent ROS production and JNK activation in 9 PIs. A comparison among the most clinically used PIs, ritonavir (RTV), LPV, and DRV, revealed that LPV potently and RTV moderately but not DRV induced ER stress via ROS-dependent JNK activation rather than proteasome inhibition. Finally, we analyzed ER stress induction in tissues of mice intraperitoneally injected with RTV, LPV, and DRV. RTV and LPV but not DRV showed ER stress induction in several mice tissues. In conclusion, we first identify LPV as the most potent ER stress inducing PI among 9 FDA-approved PIs in human cells, and although clinical verification is necessary, we show here that DRV has the advantage of less ROS and ER stress induction potential compared with LPV in vitro and in vivo.


Bioorganic & Medicinal Chemistry Letters | 2013

Inhibition of HIV-1 replication by a tricyclic coumarin GUT-70 in acutely and chronically infected cells

Eriko Kudo; Manabu Taura; Kouki Matsuda; Masako Shimamoto; Ryusho Kariya; Hiroki Goto; Shinichiro Hattori; Shinya Kimura; Seiji Okada

The anti-HIV-1 activity of GUT-70, a natural product derived from the stem bark of Chlophyllum brasiliense, was evaluated. GUT-70 inhibited HIV-1 replication in both acutely and chronically infected cells through suppression of NF-κB. Our results strengthen the idea that NF-κB pathway is one of the potential targets to control HIV-1 replication and that GUT-70 could serve as a lead compound to develop novel therapeutic agents against HIV-1 infection.


Molecular and Cellular Biology | 2012

Rb/E2F1 regulates the innate immune receptor Toll-like receptor 3 in epithelial cells.

Manabu Taura; Mary Ann Suico; Kosuke Koyama; Kensei Komatsu; Rui Miyakita; Chizuru Matsumoto; Eriko Kudo; Ryusho Kariya; Hiroki Goto; Shunsuke Kitajima; Chiaki Takahashi; Tsuyoshi Shuto; Mitsuyoshi Nakao; Seiji Okada; Hirofumi Kai

ABSTRACT Tumor suppressor genes regulate the antiviral host defense through molecular mechanisms that are not yet well explored. Here, we show that the tumor suppressor retinoblastoma (Rb) protein positively regulates Toll-like receptor 3 (TLR3) expression, the sensing receptor for viral double-stranded RNA and poly(I·C). TLR3 expression was lower in Rb knockout (Rb−/−) mouse embryonic fibroblasts (MEF) and in mammalian epithelial cells transfected with Rb small-interfering RNA (siRNA) than in control cells. Consequently, induction of cytokines interleukin-8 and beta interferon after poly(I·C) stimulation was impaired in Rb−/− MEF and Rb siRNA-transfected cells compared to controls. TLR3 promoter analysis showed that Rb modulates the transcription factor E2F1, which directly binds to the proximal promoter of TLR3. Exogenous addition of E2F1 decreased TLR3 promoter activity, while Rb dose dependently curbed the effect of E2F1. Interestingly, poly(I·C) increased the Rb expression, and the poly(I·C)-induced TLR3 expression was impaired in Rb-depleted cells, suggesting the importance of Rb in TLR3 induction by poly(I·C). Together, these data indicated that E2F1 suppresses TLR3 transcription, but during immune stimulation, Rb is upregulated to block the inhibitory effect of E2F1 on TLR3, highlighting a role of Rb-E2F1 axis in the innate immune response in epithelial cells.


Biochemical and Biophysical Research Communications | 2015

Inhibition of HIV-1 entry by the tricyclic coumarin GUT-70 through the modification of membrane fluidity

Kouki Matsuda; Shinichiro Hattori; Ryusho Kariya; Yuji Komizu; Eriko Kudo; Hiroki Goto; Manabu Taura; Ryuichi Ueoka; Shinya Kimura; Seiji Okada

Membrane fusion between host cells and HIV-1 is the initial step in HIV-1 infection, and plasma membrane fluidity strongly influences infectivity. In the present study, we demonstrated that GUT-70, a natural product derived from Calophyllum brasiliense, stabilized plasma membrane fluidity, inhibited HIV-1 entry, and down-regulated the expression of CD4, CCR5, and CXCR4. Since GUT-70 also had an inhibitory effect on viral replication through the inhibition of NF-κB, it is expected to be used as a dual functional and viral mutation resistant reagent. Thus, these unique properties of GUT-70 enable the development of novel therapeutic agents against HIV-1 infection.


Apoptosis | 2016

Inhibition of autophagy by chloroquine induces apoptosis in primary effusion lymphoma in vitro and in vivo through induction of endoplasmic reticulum stress.

Md. Masud Alam; Ryusho Kariya; Azusa Kawaguchi; Kouki Matsuda; Eriko Kudo; Seiji Okada

Autophagy plays a crucial role in cancer cell survival and the inhibition of autophagy is attracting attention as an emerging strategy for the treatment of cancer. Chloroquine (CQ) is an anti-malarial drug, and is also known as an inhibitor of autophagy. Recently, it has been found that CQ induces cancer cell death through the inhibition of autophagy; however, the underlying mechanism is not entirely understood. In this study, we identified the role of CQ-induced cancer cell death using Primary Effusion Lymphoma (PEL) cells. We found that a CQ treatment induced caspase-dependent apoptosis in vitro. CQ also suppressed PEL cell growth in a PEL xenograft mouse model. We showed that CQ activated endoplasmic reticulum (ER) stress signal pathways and induced CHOP, which is an inducer of apoptosis. CQ-induced cell death was significantly decreased by salbrinal, an ER stress inhibitor, indicating that CQ-induced apoptosis in PEL cells depended on ER stress. We show here for the first time that the inhibition of autophagy induces ER stress-mediated apoptosis in PEL cells. Thus, the inhibition of autophagy is a novel strategy for cancer chemotherapy.


Journal of Cancer Research and Clinical Oncology | 2015

Targeting VEGF and interleukin-6 for controlling malignant effusion of primary effusion lymphoma

Hiroki Goto; Eriko Kudo; Ryusho Kariya; Manabu Taura; Harutaka Katano; Seiji Okada

PurposePrimary effusion lymphoma (PEL) is an aggressive subtype of non-Hodgkin lymphoma that shows malignant effusion most commonly seen in advanced AIDS patients. In this study, we clarified the potential role of VEGF and IL-6 in PEL fluid retention and evaluated the efficacy of humanized anti-VEGF monoclonal antibody (mAb), bevacizumab, and humanized anti-IL-6 receptor mAb, tocilizumab, against PEL.MethodsThe production of VEGF and IL-6, and the expression of IL-6Rα in PEL cell lines were examined. The antiproliferative effect of bevacizumab and tocilizumab on PEL cells was evaluated in vitro. The effect of tocilizumab on VEGF was also examined. An intraperitoneal xenograft mouse model was used for in vivo efficacy.ResultsAlthough we found the production of VEGF and IL-6, and the expression of IL-6Rα in PEL cell lines, bevacizumab and tocilizumab did not inhibit the proliferation of PEL cells in vitro. Tocilizumab decreased VEGF mRNA and VEGF production by inhibiting Stat3 phosphorylation and Stat3 binding to VEGF promoter. In a PEL xenograft mouse model that showed profuse ascites, bevacizumab suppressed ascites formation completely, indicating the critical role of VEGF for PEL fluid retention. Tocilizumab also significantly inhibited ascites formation in vivo. Moreover, these mAbs improved the overall survival of treated mice.ConclusionsIL-6-VEGF axis contributed to fluid retention, and bevacizumab and tocilizumab could be effective molecular targeting therapies for PEL.


Journal of Virology | 2015

COMMD1/Murr1 Reinforces HIV-1 Latent Infection through IκB-α Stabilization

Manabu Taura; Eriko Kudo; Ryusho Kariya; Hiroki Goto; Kouki Matsuda; Shinichiro Hattori; Kulthida Vaeteewoottacharn; Fiona J. McDonald; Mary Ann Suico; Tsuyoshi Shuto; Hirofumi Kai; Seiji Okada

ABSTRACT The transcription factor NF-κB is important for HIV-1 transcription initiation in primary HIV-1 infection and reactivation in latently HIV-1-infected cells. However, comparative analysis of the regulation and function of NF-κB in latently HIV-1-infected cells has not been done. Here we show that the expression of IκB-α, an endogenous inhibitor of NF-κB, is enhanced by latent HIV-1 infection via induction of the host-derived factor COMMD1/Murr1 in myeloid cells but not in lymphoid cells by using four sets of latently HIV-1-infected cells and the respective parental cells. IκB-α protein was stabilized by COMMD1, which attenuated NF-κB signaling during Toll-like receptor ligand and tumor necrosis factor alpha treatment and enhanced HIV-1 latency in latently HIV-1-infected cells. Activation of the phosphoinositol 3-kinase (PI3K)–JAK pathway is involved in COMMD1 induction in latently HIV-1-infected cells. Our findings indicate that COMMD1 induction is the NF-κB inhibition mechanism in latently HIV-1-infected cells that contributes to innate immune deficiency and reinforces HIV-1 latency. Thus, COMMD1 might be a double-edged sword that is beneficial in primary infection but not beneficial in latent infection when HIV-1 eradication is considered. IMPORTANCE HIV-1 latency is a major barrier to viral eradication in the era of combination antiretroviral therapy. In this study, we found that COMMD1/Murr1, previously identified as an HIV-1 restriction factor, inhibits the proteasomal degradation of IκB-α by increasing the interaction with IκB-α in latently HIV-1-infected myeloid cells. IκB-α protein was stabilized by COMMD1, which attenuated NF-κB signaling during the innate immune response and enhanced HIV-1 latency in latently HIV-1-infected cells. Activation of the PI3K-JAK pathway is involved in COMMD1 induction in latently HIV-1-infected cells. Thus, the host-derived factor COMMD1 is beneficial in suppressing primary infection but enhances latent infection, indicating that it may be a double-edged sword in HIV-1 eradication.


Asian Pacific Journal of Cancer Prevention | 2013

Diethyldithiocarbamate Suppresses an NF-κB Dependent Metastatic Pathway in Cholangiocarcinoma Cells

Pattaravadee Srikoon; Ryusho Kariya; Eriko Kudo; Hiroki Goto; Kulthida Vaeteewoottacharn; Manabu Taura; Sopit Wongkham; Seiji Okada

Cholangiocarcinoma (CCA) is a tumor of biliary ducts, which has a high mortality rate and dismal prognosis. Constitutively activation of the transcription factor nuclear factor kappa-B (NF-κB) has been previously demonstrated in CCA. It is therefore a potential target for CCA treatment. Effects of diethyldithiocarbamate (DDTC) on NF-κB-dependent apoptosis induction in cancer have been reported; however, anti-metastasis has never been addressed. Therefore, here the focus was on DDTC effects on CCA migration and adhesion. Anti-proliferation, anti-migration and anti-adhesion activities were determined in CCA cell lines, along with p65 protein levels and function. NF-κB target gene expression was determined by quantitative RT-PCR. DDTC inhibited CCA cell proliferation. Suppression of migration and adhesion were observed prior to anti-CCA proliferation. These effects were related to decreased p65, reduction in NF-κB DNA binding, and impaired activity. Moreover, suppression of ICAM-1 expression supported NF-kB-dependent anti-metastatic effects of DDTC. Taken together, DDTC suppression of CCA migration and adhesion through inhibition of NF-κB signaling pathway is suggested from the current study. This might be a promising treatment choice against CCA metastasis.


Tumor Biology | 2016

Inhibition of carbonic anhydrase potentiates bevacizumab treatment in cholangiocarcinoma

Kulthida Vaeteewoottacharn; Ryusho Kariya; Paweena Dana; Sawako Fujikawa; Kouki Matsuda; Koichi Ohkuma; Eriko Kudo; Ratthaphol Kraiklang; Chaisiri Wongkham; Sopit Wongkham; Seiji Okada

Cholangiocarcinoma (CCA) is a unique liver cancer subtype with an increasing incidence globally. The lack of specific symptoms and definite diagnostic markers results in a delayed diagnosis and disease progression. Systemic chemotherapy is commonly selected for advanced CCA even though its advantages remain unknown. Targeted therapy, especially anti-vascular endothelial growth factor (VEGF) therapy, is promising for CCA; however, improvements in the therapeutic regimen are necessary to overcome subsequent resistance. We demonstrated VEGF expression was higher in CCA cell lines than in other liver cancer cells. Secreted VEGFs played roles in the induction of peri- and intra-tumoral vascularization. VEGF neutralization by bevacizumab effectively reduced tumor growth, mainly through the suppression of angiogenesis; however, increases in the expression of hypoxia-inducible factor 1α (HIF1α) and HIF1α-responsive genes (such as VEGF, VEGFR1, VEGFR2, carbonic anhydrase (CA) IX and CAXII) indicated the potential for subsequent therapeutic resistance. Supplementation with a carbonic anhydrase inhibitor, acetazolamide, enhanced the anti-CCA effects of bevacizumab. Anti-angiogenesis and anti-proliferation were observed with the combination treatment. These results suggested a novel treatment strategy to overcome anti-angiogenesis resistance and the importance of “induced essentiality” in the treatment of CCA.

Collaboration


Dive into the Eriko Kudo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harutaka Katano

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge