Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eriko Sugano is active.

Publication


Featured researches published by Eriko Sugano.


Journal of Biological Chemistry | 2009

Molecular Determinants Differentiating Photocurrent Properties of Two Channelrhodopsins from Chlamydomonas

Hongxia Wang; Yuka Sugiyama; Takuya Hikima; Eriko Sugano; Hiroshi Tomita; Tetsuo Takahashi; Toru Ishizuka; Hiromu Yawo

A light signal is converted into an electrical one in a single molecule named channelrhodopsin, one of the archaea-type rhodopsins in unicellular green algae. Although highly homologous, two molecules of this family, channelrhodopsin-1 (ChR1) and -2 (ChR2), are distinct in photocurrent properties such as the wavelength sensitivity, desensitization, and turning-on and -off kinetics. However, the structures regulating these properties have not been completely identified. Photocurrents were analyzed for several chimera molecules made by replacing N-terminal segments of ChR2 with the homologous counterparts of ChR1. We found that the wavelength sensitivity of the photocurrent was red-shifted with negligible desensitization and slowed turning-on and -off kinetics when replacement was made with the segment containing the fifth transmembrane helix of ChR1. Therefore, this segment is involved in the determination of photocurrent properties, the wavelength sensitivity, and the kinetics characterizing ChR1 and ChR2. Eight amino acid residues differentiating this segment were exchanged one-by-one, and the photocurrent properties of each targeted mutant ChR2 were further analyzed. Among them, position Tyr226(ChR1)/Asn187(ChR2) is one of the molecular determinants involved in the wavelength sensitivity, desensitization, and turning-on and -off kinetics. It is suggested that these amino acid residues directly or indirectly interact with the chromophore as well as with the protein structure determining the photocurrent kinetics. Some of the chimera channelrhodopsins are suggested to have several advantages over the wild-type ChR2 in the introduction of light-induced membrane depolarization for the purpose of artificial stimulation of neurons in vivo and visual prosthesis for photoreceptor degeneration.


PLOS ONE | 2009

Visual Properties of Transgenic Rats Harboring the Channelrhodopsin-2 Gene Regulated by the Thy-1.2 Promoter

Hiroshi Tomita; Eriko Sugano; Yugo Fukazawa; H. Isago; Yuka Sugiyama; Teru Hiroi; Toru Ishizuka; Hajime Mushiake; Megumi Kato; Masumi Hirabayashi; Ryuichi Shigemoto; Hiromu Yawo; Makoto Tamai

Channelrhodopsin-2 (ChR2), one of the archea-type rhodopsins from green algae, is a potentially useful optogenetic tool for restoring vision in patients with photoreceptor degeneration, such as retinitis pigmentosa. If the ChR2 gene is transferred to retinal ganglion cells (RGCs), which send visual information to the brain, the RGCs may be repurposed to act as photoreceptors. In this study, by using a transgenic rat expressing ChR2 specifically in the RGCs under the regulation of a Thy-1.2 promoter, we tested the possibility that direct photoactivation of RGCs could restore effective vision. Although the contrast sensitivities of the optomotor responses of transgenic rats were similar to those observed in the wild-type rats, they were enhanced for visual stimuli of low-spatial frequency after the degeneration of native photoreceptors. This result suggests that the visual signals derived from the ChR2-expressing RGCs were reinterpreted by the brain to form behavior-related vision.


Experimental Eye Research | 2010

Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats ☆

Hiroshi Tomita; Eriko Sugano; H. Isago; Teru Hiroi; Zhuo Wang; Emi Ohta; Makoto Tamai

To test the hypothesis that transduction of the channelrhodopsin-2 (ChR2) gene, a microbial-type rhodopsin gene, into retinal ganglion cells of genetically blind rats will restore functional vision, we recorded visually evoked potentials and tested the experimental rats for the presence of optomotor responses. The N-terminal fragment of the ChR2 gene was fused to the fluorescent protein Venus and inserted into an adeno-associated virus to make AAV2-ChR2V. AAV2-ChR2V was injected intravitreally into the eyes of 6-month-old dystrophic RCS (rdy/rdy) rats. Visual function was evaluated six weeks after the injection by recording visually evoked potentials (VEPs) and testing optomotor responses. The expression of ChR2V in the retina was investigated histologically. We found that VEPs could not be recorded from 6-month-old dystrophic RCS rats that had not been injected with AAV2-ChR2V. In contrast, VEPs were elicited from RCS rats six weeks after injection with AAV2-ChR2V. The VEPs were recorded at stimulation rates <20Hz, which was the same as that of normal rats. Optomotor responses were also significantly better after the AAV2-ChR2V injection. Expression of ChR2V was observed mainly in the retinal ganglion cells. These findings demonstrate that visual function can be restored in blind rats by transducing the ChR2V gene into retinal ganglion cells.


PLOS ONE | 2010

Dissecting a role for melanopsin in behavioural light aversion reveals a response independent of conventional photoreception.

Ma'ayan Semo; Carlos Gias; Ahmad Ahmado; Eriko Sugano; Annette E. Allen; Jean M. Lawrence; Hiroshi Tomita; Peter J. Coffey; Anthony Vugler

Melanopsin photoreception plays a vital role in irradiance detection for non-image forming responses to light. However, little is known about the involvement of melanopsin in emotional processing of luminance. When confronted with a gradient in light, organisms exhibit spatial movements relative to this stimulus. In rodents, behavioural light aversion (BLA) is a well-documented but poorly understood phenomenon during which animals attribute salience to light and remove themselves from it. Here, using genetically modified mice and an open field behavioural paradigm, we investigate the role of melanopsin in BLA. While wildtype (WT), melanopsin knockout (Opn4−/−) and rd/rd cl (melanopsin only (MO)) mice all exhibit BLA, our novel methodology reveals that isolated melanopsin photoreception produces a slow, potentiating response to light. In order to control for the involvement of pupillary constriction in BLA we eliminated this variable with topical atropine application. This manipulation enhanced BLA in WT and MO mice, but most remarkably, revealed light aversion in triple knockout (TKO) mice, lacking three elements deemed essential for conventional photoreception (Opn4−/− Gnat1−/− Cnga3−/−). Using a number of complementary strategies, we determined this response to be generated at the level of the retina. Our findings have significant implications for the understanding of how melanopsin signalling may modulate aversive responses to light in mice and humans. In addition, we also reveal a clear potential for light perception in TKO mice.


PLOS ONE | 2013

Optogenetically Induced Seizure and the Longitudinal Hippocampal Network Dynamics

Shin-ichiro Osawa; Masaki Iwasaki; Ryosuke Hosaka; Yoshiya Matsuzaka; Hiroshi Tomita; Toru Ishizuka; Eriko Sugano; Eiichi Okumura; Hiromu Yawo; Nobukazu Nakasato; Teiji Tominaga; Hajime Mushiake

Epileptic seizure is a paroxysmal and self-limited phenomenon characterized by abnormal hypersynchrony of a large population of neurons. However, our current understanding of seizure dynamics is still limited. Here we propose a novel in vivo model of seizure-like afterdischarges using optogenetics, and report on investigation of directional network dynamics during seizure along the septo-temporal (ST) axis of hippocampus. Repetitive pulse photostimulation was applied to the rodent hippocampus, in which channelrhodopsin-2 (ChR2) was expressed, under simultaneous recording of local field potentials (LFPs). Seizure-like afterdischarges were successfully induced after the stimulation in both W-TChR2V4 transgenic (ChR2V-TG) rats and in wild type rats transfected with adeno-associated virus (AAV) vectors carrying ChR2. Pulse frequency at 10 and 20 Hz, and a 0.05 duty ratio were optimal for afterdischarge induction. Immunohistochemical c-Fos staining after a single induced afterdischarge confirmed neuronal activation of the entire hippocampus. LFPs were recorded during seizure-like afterdischarges with a multi-contact array electrode inserted along the ST axis of hippocampus. Granger causality analysis of the LFPs showed a bidirectional but asymmetric increase in signal flow along the ST direction. State space presentation of the causality and coherence revealed three discrete states of the seizure-like afterdischarge phenomenon: 1) resting state; 2) afterdischarge initiation with moderate coherence and dominant septal-to-temporal causality; and 3) afterdischarge termination with increased coherence and dominant temporal-to-septal causality. A novel in vivo model of seizure-like afterdischarge was developed using optogenetics, which was advantageous in its reproducibility and artifact-free electrophysiological observations. Our results provide additional evidence for the potential role of hippocampal septo-temporal interactions in seizure dynamics in vivo. Bidirectional networks work hierarchically along the ST hippocampus in the genesis and termination of epileptic seizures.


European Journal of Pharmacology | 2002

Nipradilol inhibits apoptosis by preventing the activation of caspase-3 via S-nitrosylation and the cGMP-dependent pathway.

Hiroshi Tomita; Toru Nakazawa; Eriko Sugano; Toshiaki Abe; Makoto Tamai

To study whether nipradilol, which is used as an ophthalmic solution for the treatment of glaucoma, has a cytoprotective effect, we investigated its effect on the apoptosis induced by serum withdrawal in PC12 cells. Nipradilol has alpha1- and beta-adrenoceptor-blocking and nitric oxide (NO)-donating properties. We also investigated the effects of timolol, prazosin and S-nitroso-N-acetylpenicillamine (SNAP) on PC12 cell death. Serum withdrawal from PC12 cells resulted in apoptosis, and the survival rate was decreased in a time-dependent manner. The addition of nipradilol to the medium showed a cytoprotective effect on PC12 cell death in a dose-dependent manner, but timolol and prazosin did not. We measured caspase-3 activity to clarify the mechanism of the inhibition of apoptosis in the presence or absence of dithiothreitol (DTT). The caspase-3 activity could be reactivated by DTT. In addition, to investigate the relationship of the cGMP-dependent pathway to the nipradilol-induced cytoprotective effect, we tested the effect of the protein kinase G inhibitor KT5823. KT5823 partially reversed the nipradilol-mediated cytoprotective effect. These results indicate that the cytoprotective effect of nipradilol in PC12 cell death was due to the caspase-3 inhibition mediated by NO-related S-nitrosylation and activation of protein kinase G.


Scientific Reports | 2015

Near-infrared (NIR) up-conversion optogenetics.

Shoko Hososhima; Hideya Yuasa; Toru Ishizuka; Mohammad Razuanul Hoque; Takayuki Yamashita; Akihiro Yamanaka; Eriko Sugano; Hiroshi Tomita; Hiromu Yawo

Non-invasive remote control technologies designed to manipulate neural functions have been long-awaited for the comprehensive and quantitative understanding of neuronal network in the brain as well as for the therapy of neurological disorders. Recently, it has become possible for the neuronal activity to be optically manipulated using biological photo-reactive molecules such as channelrhodopsin (ChR)-2. However, ChR2 and its relatives are mostly reactive to visible light, which does not effectively penetrate through biological tissues. In contrast, near-infrared (NIR) light (650–1450 nm) penetrates deep into the tissues because biological systems are almost transparent to light within this so-called ‘imaging window’. Here we used lanthanide nanoparticles (LNPs), composed of rare-earth elements, as luminous bodies to activate ChRs since they absorb low-energy NIR light to emit high-energy visible light (up-conversion). Here, we created a new type of optogenetic system which consists of the donor LNPs and the acceptor ChRs. The NIR laser irradiation emitted visible light from LNPs, then induced the photo-reactive responses in the near-by cells that expressed ChRs. However, there remains room for large improvements in the energy efficiency of the LNP-ChR system.


Gene Therapy | 2011

Immune responses to adeno-associated virus type 2 encoding channelrhodopsin-2 in a genetically blind rat model for gene therapy

Eriko Sugano; H. Isago; Zhuo Wang; Namie Murayama; Makoto Tamai; Hiroshi Tomita

We had previously reported that transduction of the channelrhodopsin-2 (ChR2) gene into retinal ganglion cells restores visual function in genetically blind, dystrophic Royal College of Surgeons (RCS) rats. In this study, we attempted to reveal the safety and influence of exogenous ChR2 gene expression. Adeno-associated virus (AAV) type 2 encoding ChR2 fused to Venus (rAAV-ChR2V) was administered by intra-vitreous injection to dystrophic RCS rats. However, rAAV-ChR2 gene expression was detected in non-target organs (intestine, lung and heart) in some cases. ChR2 function, monitored by recording visually evoked potentials, was stable across the observation period (64 weeks). No change in retinal histology and no inflammatory marker of leucocyte adhesion in the retinal vasculature were observed. Although antibodies to rAAV (0.01–12.21 μg ml−1) and ChR2 (0–4.77 μg ml−1) were detected, their levels were too low for rejection. T-lymphocyte analysis revealed recognition by T cells and a transient inflammation-like immune reaction only until 1 month after the rAAV-ChR2V injection. In conclusion, ChR2, which originates from Chlamydomonas reinhardtii, can be expressed without immunologically harmful reactions in vivo. These findings will help studies of ChR2 gene transfer to restore vision in progressed retinitis pigmentosa.


Experimental Eye Research | 2003

Comparative study of cathepsins D and S in rat IPE and RPE cells

Eriko Sugano; Hiroshi Tomita; Toshiaki Abe; Asahi Yamashita; Makoto Tamai

To investigate differences between activities related to phagocytosis in iris pigment epithelial (IPE) and retinal pigment epithelial (RPE) cells, an aspartic protease, cathepsin D (cat D), and a cysteine protease, cathepsin S (cat S), of IPE and RPE were studied. IPE and RPE cells were isolated from Long Evans rat eyes. The origin of the isolated cells was determined by pigmentation and cytokeratin labelling. The mRNA expressions of cat D and cat S in cultured IPE or RPE cells were investigated by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). Enzyme activities of cat D and cat S in IPE or RPE cells were measured by using specific fluorogenic substrates, MOCAc-Gly-Lys-Pro-Ile-Leu-Phe-Phe-Arg-Leu-Lys-(Dnp)D-Arg-NH2 and Z-Val-Val-Arg-MCA, respectively. Western blot analysis of both proteins was also performed. The cultured cells, both of IPE and RPE cells were pigmented and showed positive labelling with an anti-cytokeratin monoclonal antibody. The cat D activity in RPE cells was 37 times that in IPE cells. The cat S activity in RPE cells was four times that in IPE cells. On the other hand, mRNA expression levels of cat D in RPE cells were at the same level with IPE cells, cat S mRNA expression in RPE cells were 10 times that in IPE cells. These results were also correlated with the Western blot analysis. In this study, we measured the characteristic expressions of cat D and S in IPE and RPE cells for the first time to compare their lysosomal activities. IPE cells have the lysosomal activities like RPE cells, however, the function of lysosomal activity in IPE cells is beneath RPEs. These results indicated that the ability of ROS digestion in IPE cells was not same as RPE cells.


Molecular Therapy | 2014

Restoration of the majority of the visual spectrum by using modified Volvox channelrhodopsin-1.

Hiroshi Tomita; Eriko Sugano; Namie Murayama; Taku Ozaki; Fumiaki Nishiyama; Kitako Tabata; Maki Takahashi; Takehiko Saito; Makoto Tamai

We previously showed that blind rats whose vision was restored by gene transfer of Chlamydomonas channelrhodopsin-2 (ChR2) could only detect wavelengths less than 540 nm because of the action spectrum of the transgene product. Volvox-derived channelrhodopsin-1, VChR1, has a broader spectrum than ChR2. However, the VChR1 protein was mainly localized in the cytoplasm and showed weak ion channel properties when the VChR1 gene was transfected into HEK293 cells. We generated modified Volvox channelrhodopsin-1 (mVChR1), which is a chimera of Volvox channelrhodopsin-1 and Chlamydomonas channelrhodopsin-1 and demonstrated increased plasma membrane integration and dramatic improvement in its channel properties. Under whole-cell patch clamp, mVChR1-expressing cells showed a photo-induced current upon stimulation at 468–640 nm. The evoked currents in mVChR1-expressing cells were ~30 times larger than those in VChR1-expressing cells. Genetically, blind rats expressing mVChR1 via an adeno-associated virus vector regained their visual responses to light with wavelengths between 468 and 640 nm and their recovered visual responses were maintained for a year. Thus, mVChR1 is a candidate gene for gene therapy for restoring vision, and gene delivery of mVChR1 may provide blind patients access to the majority of the visible light spectrum.

Collaboration


Dive into the Eriko Sugano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge