Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eriko Suzuki is active.

Publication


Featured researches published by Eriko Suzuki.


Molecular Cell | 2008

A TFTC/STAGA Module Mediates Histone H2A and H2B Deubiquitination, Coactivates Nuclear Receptors, and Counteracts Heterochromatin Silencing

Yue Zhao; Guillaume Lang; Saya Ito; Jacques Bonnet; Eric Metzger; Shun Sawatsubashi; Eriko Suzuki; Xavier Le Guezennec; Hendrik G. Stunnenberg; Aleksey N. Krasnov; S. G. Georgieva; Roland Schüle; Ken-ichi Takeyama; Shigeaki Kato; Laszlo Tora; Didier Devys

Transcriptional activators, several different coactivators, and general transcription factors are necessary to access specific loci in the dense chromatin structure to allow precise initiation of RNA polymerase II (Pol II) transcription. Histone acetyltransferase (HAT) complexes were implicated in loosening the chromatin around promoters and thus in gene activation. Here we demonstrate that the 2 MDa GCN5 HAT-containing metazoan TFTC/STAGA complexes contain a histone H2A and H2B deubiquitinase activity. We have identified three additional subunits of TFTC/STAGA (ATXN7L3, USP22, and ENY2) that form the deubiquitination module. Importantly, we found that this module is an enhancer of position effect variegation in Drosophila. Furthermore, we demonstrate that ATXN7L3, USP22, and ENY2 are required as cofactors for the full transcriptional activity by nuclear receptors. Thus, the deubiquitinase activity of the TFTC/STAGA HAT complex is necessary to counteract heterochromatin silencing and acts as a positive cofactor for activation by nuclear receptors in vivo.


Genes & Development | 2010

A histone chaperone, DEK, transcriptionally coactivates a nuclear receptor

Shun Sawatsubashi; Takuya Murata; Jinseon Lim; Ryoji Fujiki; Saya Ito; Eriko Suzuki; Masahiko Tanabe; Yue Zhao; Shuhei Kimura; Sally Fujiyama; Takashi Ueda; Daiki Umetsu; Takashi Ito; Ken-ichi Takeyama; Shigeaki Kato

Chromatin reorganization is essential for transcriptional control by sequence-specific transcription factors. However, the molecular link between transcriptional control and chromatin reconfiguration remains unclear. By colocalization of the nuclear ecdysone receptor (EcR) on the ecdysone-induced puff in the salivary gland, Drosophila DEK (dDEK) was genetically identified as a coactivator of EcR in both insect cells and intact flies. Biochemical purification and characterization of the complexes containing fly and human DEKs revealed that DEKs serve as histone chaperones via phosphorylation by forming complexes with casein kinase 2. Consistent with the preferential association of the DEK complex with histones enriched in active epigenetic marks, dDEK facilitated H3.3 assembly during puff formation. In some human myeloid leukemia patients, DEK was fused to CAN by chromosomal translocation. This mutation significantly reduced formation of the DEK complex, which is required for histone chaperone activity. Thus, the present study suggests that at least one histone chaperone can be categorized as a type of transcriptional coactivator for nuclear receptors.


Molecular and Cellular Biology | 2009

Corepressive Action of CBP on Androgen Receptor Transactivation in Pericentric Heterochromatin in a Drosophila Experimental Model System

Yue Zhao; Ken-ichi Takeyama; Shun Sawatsubashi; Saya Ito; Eriko Suzuki; Kaoru Yamagata; Masahiko Tanabe; Shuhei Kimura; Sally Fujiyama; Takashi Ueda; Takuya Murata; Hiroyuki Matsukawa; Yuko Shirode; Alexander Kouzmenko; Feng Li; T. Tabata; Shigeaki Kato

ABSTRACT Ligand-bound nuclear receptors (NR) activate transcription of the target genes. This activation is coupled with histone modifications and chromatin remodeling through the function of various coregulators. However, the nature of the dependence of a NR coregulator action on the presence of the chromatin environment at the target genes is unclear. To address this issue, we have developed a modified position effect variegation experimental model system that includes an androgen-dependent reporter transgene inserted into either a pericentric heterochromatin region or a euchromatic region of Drosophila chromosome. Human androgen receptor (AR) and its constitutively active truncation mutant (AR AF-1) were transcriptionally functional in both chromosomal regions. Predictably, the level of AR-induced transactivation was lower in the pericentric heterochromatin. In genetic screening for AR AF-1 coregulators, Drosophila CREB binding protein (dCBP) was found to corepress AR transactivation at the pericentric region whereas it led to coactivation in the euchromatic area. Mutations of Sir2 acetylation sites or deletion of the CBP acetyltransferase domain abrogated dCBP corepressive action for AR at heterochromatic areas in vivo. Such a CBP corepressor function for AR was observed in the transcriptionally silent promoter of an AR target gene in cultured mammalian cells. Thus, our findings suggest that the action of NR coregulators may depend on the state of chromatin at the target loci.


Biochemical and Biophysical Research Communications | 2012

Ecdysone receptor (EcR) suppresses lipid accumulation in the Drosophila fat body via transcription control.

Yuki Kamoshida; Sally Fujiyama-Nakamura; Shuhei Kimura; Eriko Suzuki; Jinseon Lim; Yumi Shiozaki-Sato; Shigeaki Kato; Ken-ichi Takeyama

Lipid metabolism drastically changes in response to the environmental factors in metazoans. Lipid is accumulated at the food rich condition, while mobilized in adipocyte tissue in starvation. Such lipid mobilization is also evident during the pupation of the insects. Pupation is induced by metamorphosis hormone, ecdysone via ecdysone receptor (EcR) with lipid mobilization, however, the molecular link of the EcR-mediated signal to the lipid mobilization remains elusive. To address this issue, EcR was genetically knocked-down selectively in 3rd instar larva fat body of Drosophila, corresponding to the adipocyte tissues in mammalians, that contains adipocyte-like cells. In this mutant, lipid accumulation was increased in the fat body. Lipid accumulation was also increased when knocked-down of taiman, which served as the EcR co-activator. Two lipid metabolism regulatory factor, E75B and adipose (adp) as well as cell growth factor, dMyc, were found as EcR target genes in the adipocyte-like cells, and consistently knock-down of these EcR target genes brought phenotypes in lipid accumulation supporting EcR function. These findings suggest that EcR-mediated ecdysone signal is significant in lipid metabolism in insects.


Biochemical and Biophysical Research Communications | 2008

Drosophila arginine methyltransferase 1 (DART1) is an ecdysone receptor co-repressor.

Shuhei Kimura; Shun Sawatsubashi; Saya Ito; Alexander Kouzmenko; Eriko Suzuki; Yue Zhao; Kaoru Yamagata; Masahiko Tanabe; Takashi Ueda; Sari Fujiyama; Takuya Murata; Hiroyuki Matsukawa; Ken-ichi Takeyama; Nobuo Yaegashi; Shigeaki Kato

Histone arginine methylation is an epigenetic marker that regulates gene expression by defining the chromatin state. Arginine methyltransferases, therefore, serve as transcriptional co-regulators. However, unlike other transcriptional co-regulators, the physiological roles of arginine methyltransferases are poorly understood. Drosophila arginine methyltransferase 1 (DART1), the mammalian PRMT1 homologue, methylates the arginine residue of histone H4 (H4R3me2). Disruption of DART1 in Drosophila by imprecise P-element excision resulted in low viability during metamorphosis in the pupal stages. In the pupal stage, an ecdysone hormone signal is critical for developmental progression. DART1 interacted with the nuclear ecdysone receptor (EcR) in a ligand-dependent manner, and co-repressed EcR in intact flies. These findings suggest that DART1, a histone arginine methyltransferase, is a co-repressor of EcR that is indispensable for normal pupal development in the intact fly.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Aberrant E2F activation by polyglutamine expansion of androgen receptor in SBMA neurotoxicity.

Eriko Suzuki; Yue Zhao; Saya Ito; Shun Sawatsubashi; Takuya Murata; Takashi Furutani; Yuko Shirode; Kaoru Yamagata; Masahiko Tanabe; Shuhei Kimura; Takashi Ueda; Sally Fujiyama; Jinseon Lim; Hiroyuki Matsukawa; Alexander Kouzmenko; Toshiro Aigaki; Tetsuya Tabata; Ken-ichi Takeyama; Shigeaki Kato

Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative disorder caused by a polyglutamine repeat (polyQ) expansion within the human androgen receptor (AR). Unlike other neurodegenerative diseases caused by abnormal polyQ expansion, the onset of SBMA depends on androgen binding to mutant human polyQ-AR proteins. This is also observed in Drosophila eyes ectopically expressing the polyQ-AR mutants. We have genetically screened mediators of androgen-induced neurodegeneration caused by polyQ-AR mutants in Drosophila eyes. We identified Rbf (Retinoblastoma-family protein), the Drosophila homologue of human Rb (Retinoblastoma protein), as a neuroprotective factor. Androgen-dependent association of Rbf or Rb with AR was remarkably potentiated by aberrant polyQ expansion. Such potentiated Rb association appeared to attenuate recruitment of histone deacetyltransferase 1 (HDAC1), a corepressor of E2F function. Either overexpression of Rbf or E2F deficiency in fly eyes reduced the neurotoxicity of the polyQ-AR mutants. Induction of E2F function by polyQ-AR-bound androgen was suppressed by Rb in human neuroblastoma cells. We conclude that abnormal expansion of polyQ may potentiate innate androgen-dependent association of AR with Rb. This appears to lead to androgen-dependent onset of SBMA through aberrant E2F transactivation caused by suppressed histone deacetylation.


Molecular Cell | 2012

Epigenetic Silencing of Core Histone Genes by HERS in Drosophila

Saya Ito; Sally Fujiyama-Nakamura; Shuhei Kimura; Jinseon Lim; Yuki Kamoshida; Yumi Shiozaki-Sato; Shun Sawatsubashi; Eriko Suzuki; Masahiko Tanabe; Takashi Ueda; Takuya Murata; Hiromi Kato; Fumiaki Ohtake; Ryoji Fujiki; Tsuneharu Miki; Alexander Kouzmenko; Ken-ichi Takeyama; Shigeaki Kato

Cell cycle-dependent expression of canonical histone proteins enables newly synthesized DNA to be integrated into chromatin in replicating cells. However, the molecular basis of cell cycle-dependency in the switching of histone gene regulation remains to be uncovered. Here, we report the identification and biochemical characterization of a molecular switcher, HERS (histone gene-specific epigenetic repressor in late S phase), for nucleosomal core histone gene inactivation in Drosophila. HERS protein is phosphorylated by a cyclin-dependent kinase (Cdk) at the end of S-phase. Phosphorylated HERS binds to histone gene regulatory regions and anchors HP1 and Su(var)3-9 to induce chromatin inactivation through histone H3 lysine 9 methylation. These findings illustrate a salient molecular switch linking epigenetic gene silencing to cell cycle-dependent histone production.


Bioscience, Biotechnology, and Biochemistry | 2005

A Role of Androgen Receptor Protein in Cell Growth of an Androgen-Independent Prostate Cancer Cell Line

Takashi Furutani; Ken-ichi Takeyama; Hiroshi Koutoku; Saya Ito; Nobuaki Taniguchi; Eriko Suzuki; Masafumi Kudoh; Masayuki Shibasaki; Hisataka Shikama; Shigeaki Kato

Prostate cancer, which develops due to androgen and is initially responsive to androgen deprivation therapy, often comes to acquire androgen deprivation therapy resistance in short order. We investigated the role of androgen receptor (AR) protein in an androgen-independent prostate cancer cell line using AR ligands and AR siRNA. Although the androgen-independent cell line scarcely responded to AR ligands, their growth was attenuated by ablation of AR protein by siRNA.


Genes to Cells | 2008

Retracted: Activation of facultatively silenced Drosophila loci associates with increased acetylation of histone H2AvD

Masahiko Tanabe; Alexander Kouzmenko; Saya Ito; Shun Sawatsubashi; Eriko Suzuki; Sally Fujiyama; Kaoru Yamagata; Yue Zhao; Shuhei Kimura; Takashi Ueda; Takuya Murata; Hiroyuki Matsukawa; Ken-ichi Takeyama; Shigeaki Kato

H2A.Z is an evolutionarily highly conserved non‐allelic variant of histone H2A. H2A.Z and its homologues have been shown to involve in both chromatin silencing and activation. Although much of our knowledge of H2A.Z biological activity has come from studies on its yeast homologue Htz1, H2A.Z appears to have more complex and diverse functions in higher eukaryotes. To investigate the involvement of H2AvD, a Drosophila homologue of mammalian H2A.Z, in mechanisms of conditional activation of facultatively silenced genes, we generated transgenic Drosophila lines expressing H2AvD fused at the C‐ or N‐terminus with the green fluorescent protein (GFP). Using heat shock‐induced gene activation and polytene chromosome puff formation as an in vivo model system, we analyzed effects of H2AvD termini modifications on transcription. We found that N‐terminally fused GFP inhibited H2AvD acetylation and impaired heat shock‐induced puff formation and hsp70 gene activation. Our data suggest that the N‐terminal region of H2AvD plays a pivotal role in transcriptional activation and that induction of transiently silenced Drosophila loci associates with increased acetylation of H2AvD.


Bioscience, Biotechnology, and Biochemistry | 2008

RNA-binding protein hoip accelerates polyQ-induced neurodegeneration in Drosophila.

Takuya Murata; Eriko Suzuki; Saya Ito; Shun Sawatsubashi; Yue Zhao; Kaoru Yamagata; Masahiko Tanabe; Sally Fujiyama; Shuhei Kimura; Takashi Ueda; Hiroyuki Matsukawa; Alexander Kouzmenko; Takashi Furutani; Erina Kuranaga; Masayuki Miura; Ken-ichi Takeyama; Shigeaki Kato

Abnormal polyglutamine (polyQ) expansion in the N-terminal domain of the human androgen receptor (hAR) is known to cause spinobulbar muscular atrophy (SBMA), a hereditary human neurodegenerative disorder. To explore the molecular mechanisms of neurodegeneration in SBMA, we genetically screened modulators of neurodegeneration in a Drosophila SBMA experimental model system. We identified hoip as an accelerator of polyQ-induced neurodegeneration. We found that hoip forms a complex with 18s rRNA together nop56 and nop5 proteins, whose human homologs are known to form a snoRNP complex involved in ribosomal RNA processing. Significantly, the levels of mutant polyQ-hAR were up-regulated in a mutant line overexpressing hoip. Consistently, severe neurodegeneration phenotype (rough eye) was also observed in both nop56 and nop5 overexpression mutant lines. These findings suggest that the process of neurodegeneration induced by abnormal polyQ expansion in the hAR may be regulated by the activity of snoRNP complex.

Collaboration


Dive into the Eriko Suzuki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masahiko Tanabe

Japanese Foundation for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge