Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erin B. Ware is active.

Publication


Featured researches published by Erin B. Ware.


Circulation-cardiovascular Genetics | 2016

Epigenetic Signatures of Cigarette Smoking

Roby Joehanes; Allan C. Just; Riccardo E. Marioni; Luke C. Pilling; Lindsay M. Reynolds; Pooja R. Mandaviya; Weihua Guan; Tao Xu; Cathy E. Elks; Stella Aslibekyan; Hortensia Moreno-Macías; Jennifer A. Smith; Jennifer A. Brody; Radhika Dhingra; Paul Yousefi; James S. Pankow; Sonja Kunze; Sonia Shah; Allan F. McRae; Kurt Lohman; Jin Sha; Devin M. Absher; Luigi Ferrucci; Wei Zhao; Ellen W. Demerath; Jan Bressler; Megan L. Grove; Tianxiao Huan; Chunyu Liu; Michael M. Mendelson

Background—DNA methylation leaves a long-term signature of smoking exposure and is one potential mechanism by which tobacco exposure predisposes to adverse health outcomes, such as cancers, osteoporosis, lung, and cardiovascular disorders. Methods and Results—To comprehensively determine the association between cigarette smoking and DNA methylation, we conducted a meta-analysis of genome-wide DNA methylation assessed using the Illumina BeadChip 450K array on 15 907 blood-derived DNA samples from participants in 16 cohorts (including 2433 current, 6518 former, and 6956 never smokers). Comparing current versus never smokers, 2623 cytosine–phosphate–guanine sites (CpGs), annotated to 1405 genes, were statistically significantly differentially methylated at Bonferroni threshold of P<1×10−7 (18 760 CpGs at false discovery rate <0.05). Genes annotated to these CpGs were enriched for associations with several smoking-related traits in genome-wide studies including pulmonary function, cancers, inflammatory diseases, and heart disease. Comparing former versus never smokers, 185 of the CpGs that differed between current and never smokers were significant P<1×10−7 (2623 CpGs at false discovery rate <0.05), indicating a pattern of persistent altered methylation, with attenuation, after smoking cessation. Transcriptomic integration identified effects on gene expression at many differentially methylated CpGs. Conclusions—Cigarette smoking has a broad impact on genome-wide methylation that, at many loci, persists many years after smoking cessation. Many of the differentially methylated genes were novel genes with respect to biological effects of smoking and might represent therapeutic targets for prevention or treatment of tobacco-related diseases. Methylation at these sites could also serve as sensitive and stable biomarkers of lifetime exposure to tobacco smoke.


JAMA Psychiatry | 2016

Genome-wide Association Studies of Posttraumatic Stress Disorder in 2 Cohorts of US Army Soldiers

Murray B. Stein; Chia-Yen Chen; Robert J. Ursano; Tianxi Cai; Joel Gelernter; Steven G. Heeringa; Sonia Jain; Kevin P. Jensen; Adam X. Maihofer; Colter Mitchell; Caroline M. Nievergelt; Matthew K. Nock; Benjamin M. Neale; Renato Polimanti; Stephan Ripke; Xiaoying Sun; Michael L. Thomas; Qian Wang; Erin B. Ware; Susan Borja; Ronald C. Kessler; Jordan W. Smoller

IMPORTANCE Posttraumatic stress disorder (PTSD) is a prevalent, serious public health concern, particularly in the military. The identification of genetic risk factors for PTSD may provide important insights into the biological foundation of vulnerability and comorbidity. OBJECTIVE To discover genetic loci associated with the lifetime risk for PTSD in 2 cohorts from the Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS). DESIGN, SETTING, AND PARTICIPANTS Two coordinated genome-wide association studies of mental health in the US military contributed participants. The New Soldier Study (NSS) included 3167 unique participants with PTSD and 4607 trauma-exposed control individuals; the Pre/Post Deployment Study (PPDS) included 947 unique participants with PTSD and 4969 trauma-exposed controls. The NSS data were collected from February 1, 2011, to November 30, 2012; the PDDS data, from January 9 to April 30, 2012. The primary analysis compared lifetime DSM-IV PTSD cases with trauma-exposed controls without lifetime PTSD. Data were analyzed from March 18 to December 27, 2015. MAIN OUTCOMES AND MEASURES Association analyses for PTSD used logistic regression models within each of 3 ancestral groups (European, African, and Latino American) by study, followed by meta-analysis. Heritability and genetic correlation and pleiotropy with other psychiatric and immune-related disorders were estimated. RESULTS The NSS population was 80.7% male (6277 of 7774 participants; mean [SD] age, 20.9 [3.3] years); the PPDS population, 94.4% male (5583 of 5916 participants; mean [SD] age, 26.5 [6.0] years). A genome-wide significant locus was found in ANKRD55 on chromosome 5 (rs159572; odds ratio [OR], 1.62; 95% CI, 1.37-1.92; P = 2.34 × 10-8) and persisted after adjustment for cumulative trauma exposure (adjusted OR, 1.64; 95% CI, 1.39-1.95; P = 1.18 × 10-8) in the African American samples from the NSS. A genome-wide significant locus was also found in or near ZNF626 on chromosome 19 (rs11085374; OR, 0.77; 95% CI, 0.70-0.85; P = 4.59 × 10-8) in the European American samples from the NSS. Similar results were not found for either single-nucleotide polymorphism in the corresponding ancestry group from the PPDS sample, in other ancestral groups, or in transancestral meta-analyses. Single-nucleotide polymorphism-based heritability was nonsignificant, and no significant genetic correlations were observed between PTSD and 6 mental disorders or 9 immune-related disorders. Significant evidence of pleiotropy was observed between PTSD and rheumatoid arthritis and, to a lesser extent, psoriasis. CONCLUSIONS AND RELEVANCE In the largest genome-wide association study of PTSD to date, involving a US military sample, limited evidence of association for specific loci was found. Further efforts are needed to replicate the genome-wide significant association with ANKRD55-associated in prior research with several autoimmune and inflammatory disorders-and to clarify the nature of the genetic overlap observed between PTSD and rheumatoid arthritis and psoriasis.


Current Epidemiology Reports | 2015

Current Applications of Genetic Risk Scores to Cardiovascular Outcomes and Subclinical Phenotypes.

Jennifer A. Smith; Erin B. Ware; Pooja Middha; Lisa Beacher; Sharon L.R. Kardia

Genetic risk scores are a useful tool for examining the cumulative predictive ability of genetic variation on cardiovascular disease. Important considerations for creating genetic risk scores include the choice of genetic variants, weighting, and comparability across ethnicities. Genetic risk scores that use information from genome-wide meta-analyses can successfully predict cardiovascular outcomes and subclinical phenotypes, yet there is limited clinical utility of these scores beyond traditional cardiovascular risk factors in many populations. Novel uses of genetic risk scores include evaluating the genetic contribution of specific intermediate traits or risk factors to cardiovascular disease, risk prediction in high-risk populations, gene-by-environment interaction studies, and Mendelian randomization studies. Though questions remain about the ultimate clinical utility of the genetic risk score, further investigation in high-risk populations and new ways to combine genetic risk scores with traditional risk factors may prove to be fruitful.


PLOS Genetics | 2017

Single-Trait and Multi-Trait Genome-Wide Association Analyses Identify Novel Loci for Blood Pressure in African-Ancestry Populations

Jingjing Liang; Thu H. Le; Digna R. Velez Edwards; Bamidele O. Tayo; Kyle J. Gaulton; Jennifer A. Smith; Yingchang Lu; Richard Jensen; Guanjie Chen; Lisa R. Yanek; Karen Schwander; Salman M. Tajuddin; Tamar Sofer; Wonji Kim; James Kayima; Colin A. McKenzie; Ervin R. Fox; Michael A. Nalls; J. Hunter Young; Yan V. Sun; Jacqueline M. Lane; Sylvia Cechova; Jie Zhou; Hua Tang; Myriam Fornage; Solomon K. Musani; Heming Wang; Juyoung Lee; Adebowale Adeyemo; Albert W. Dreisbach

Hypertension is a leading cause of global disease, mortality, and disability. While individuals of African descent suffer a disproportionate burden of hypertension and its complications, they have been underrepresented in genetic studies. To identify novel susceptibility loci for blood pressure and hypertension in people of African ancestry, we performed both single and multiple-trait genome-wide association analyses. We analyzed 21 genome-wide association studies comprised of 31,968 individuals of African ancestry, and validated our results with additional 54,395 individuals from multi-ethnic studies. These analyses identified nine loci with eleven independent variants which reached genome-wide significance (P < 1.25×10−8) for either systolic and diastolic blood pressure, hypertension, or for combined traits. Single-trait analyses identified two loci (TARID/TCF21 and LLPH/TMBIM4) and multiple-trait analyses identified one novel locus (FRMD3) for blood pressure. At these three loci, as well as at GRP20/CDH17, associated variants had alleles common only in African-ancestry populations. Functional annotation showed enrichment for genes expressed in immune and kidney cells, as well as in heart and vascular cells/tissues. Experiments driven by these findings and using angiotensin-II induced hypertension in mice showed altered kidney mRNA expression of six genes, suggesting their potential role in hypertension. Our study provides new evidence for genes related to hypertension susceptibility, and the need to study African-ancestry populations in order to identify biologic factors contributing to hypertension.


Molecular Psychiatry | 2016

Rare, low frequency and common coding variants in CHRNA5 and their contribution to nicotine dependence in European and African Americans

Emily Olfson; Nancy L. Saccone; E. O. Johnson; Li-Shiun Chen; Robert Culverhouse; Kimberly F. Doheny; S. M. Foltz; Louis Fox; Stephanie M. Gogarten; Sarah M. Hartz; K. Hetrick; Cathy C. Laurie; B. Marosy; Najaf Amin; Donna K. Arnett; R. G. Barr; Traci M. Bartz; Sarah Bertelsen; Ingrid B. Borecki; Michael R. Brown; Daniel I. Chasman; C. M. van Duijn; Mary F. Feitosa; Ervin R. Fox; Nora Franceschini; Oscar H. Franco; Megan L. Grove; Xiuqing Guo; A. Hofman; Sharon L.R. Kardia

The common nonsynonymous variant rs16969968 in the α5 nicotinic receptor subunit gene (CHRNA5) is the strongest genetic risk factor for nicotine dependence in European Americans and contributes to risk in African Americans. To comprehensively examine whether other CHRNA5 coding variation influences nicotine dependence risk, we performed targeted sequencing on 1582 nicotine-dependent cases (Fagerström Test for Nicotine Dependence score⩾4) and 1238 non-dependent controls, with independent replication of common and low frequency variants using 12 studies with exome chip data. Nicotine dependence was examined using logistic regression with individual common variants (minor allele frequency (MAF)⩾0.05), aggregate low frequency variants (0.05>MAF⩾0.005) and aggregate rare variants (MAF<0.005). Meta-analysis of primary results was performed with replication studies containing 12 174 heavy and 11 290 light smokers. Next-generation sequencing with 180 × coverage identified 24 nonsynonymous variants and 2 frameshift deletions in CHRNA5, including 9 novel variants in the 2820 subjects. Meta-analysis confirmed the risk effect of the only common variant (rs16969968, European ancestry: odds ratio (OR)=1.3, P=3.5 × 10−11; African ancestry: OR=1.3, P=0.01) and demonstrated that three low frequency variants contributed an independent risk (aggregate term, European ancestry: OR=1.3, P=0.005; African ancestry: OR=1.4, P=0.0006). The remaining 22 rare coding variants were associated with increased risk of nicotine dependence in the European American primary sample (OR=12.9, P=0.01) and in the same risk direction in African Americans (OR=1.5, P=0.37). Our results indicate that common, low frequency and rare CHRNA5 coding variants are independently associated with nicotine dependence risk. These newly identified variants likely influence the risk for smoking-related diseases such as lung cancer.


American Journal of Human Genetics | 2016

A Statistical Approach for Testing Cross-Phenotype Effects of Rare Variants

K. Alaine Broadaway; David J. Cutler; Richard Duncan; Jacob L. Moore; Erin B. Ware; Min A. Jhun; Lawrence F. Bielak; Wei Zhao; Jennifer A. Smith; Patricia A. Peyser; Sharon L.R. Kardia; Debashis Ghosh; Michael P. Epstein

Increasing empirical evidence suggests that many genetic variants influence multiple distinct phenotypes. When cross-phenotype effects exist, multivariate association methods that consider pleiotropy are often more powerful than univariate methods that model each phenotype separately. Although several statistical approaches exist for testing cross-phenotype effects for common variants, there is a lack of similar tests for gene-based analysis of rare variants. In order to fill this important gap, we introduce a statistical method for cross-phenotype analysis of rare variants using a nonparametric distance-covariance approach that compares similarity in multivariate phenotypes to similarity in rare-variant genotypes across a gene. The approach can accommodate both binary and continuous phenotypes and further can adjust for covariates. Our approach yields a closed-form test whose significance can be evaluated analytically, thereby improving computational efficiency and permitting application on a genome-wide scale. We use simulated data to demonstrate that our method, which we refer to as the Gene Association with Multiple Traits (GAMuT) test, provides increased power over competing approaches. We also illustrate our approach using exome-chip data from the Genetic Epidemiology Network of Arteriopathy.


American Journal of Human Genetics | 2015

A Statistical Approach for Rare-Variant Association Testing in Affected Sibships

Michael P. Epstein; Richard Duncan; Erin B. Ware; Min A. Jhun; Lawrence F. Bielak; Wei Zhao; Jennifer A. Smith; Patricia A. Peyser; Sharon L.R. Kardia; Glen A. Satten

Sequencing and exome-chip technologies have motivated development of novel statistical tests to identify rare genetic variation that influences complex diseases. Although many rare-variant association tests exist for case-control or cross-sectional studies, far fewer methods exist for testing association in families. This is unfortunate, because cosegregation of rare variation and disease status in families can amplify association signals for rare variants. Many researchers have begun sequencing (or genotyping via exome chips) familial samples that were either recently collected or previously collected for linkage studies. Because many linkage studies of complex diseases sampled affected sibships, we propose a strategy for association testing of rare variants for use in this study design. The logic behind our approach is that rare susceptibility variants should be found more often on regions shared identical by descent by affected sibling pairs than on regions not shared identical by descent. We propose both burden and variance-component tests of rare variation that are applicable to affected sibships of arbitrary size and that do not require genotype information from unaffected siblings or independent controls. Our approaches are robust to population stratification and produce analytic p values, thereby enabling our approach to scale easily to genome-wide studies of rare variation. We illustrate our methods by using simulated data and exome chip data from sibships ascertained for hypertension collected as part of the Genetic Epidemiology Network of Arteriopathy (GENOA) study.


American Journal of Medical Genetics | 2017

Genomewide association studies of suicide attempts in US soldiers

Murray B. Stein; Erin B. Ware; Colter Mitchell; Chia-Yen Chen; Susan Borja; Tianxi Cai; Catherine L. Dempsey; Carol S. Fullerton; Joel Gelernter; Steven G. Heeringa; Sonia Jain; Ronald C. Kessler; James A. Naifeh; Matthew K. Nock; Stephan Ripke; Xiaoying Sun; Jean C. Beckham; Nathan A. Kimbrel; Robert J. Ursano; Jordan W. Smoller

Suicide is a global public health problem with particular resonance for the US military. Genetic risk factors for suicidality are of interest as indicators of susceptibility and potential targets for intervention. We utilized population‐based nonclinical cohorts of US military personnel (discovery: N = 473 cases and N = 9778 control subjects; replication: N = 135 cases and N = 6879 control subjects) and a clinical case‐control sample of recent suicide attempters (N = 51 cases and N = 112 control subjects) to conduct GWAS of suicide attempts (SA). Genomewide association was evaluated within each ancestral group (European‐, African‐, Latino‐American) and study using logistic regression models. Meta‐analysis of the European ancestry discovery samples revealed a genomewide significant locus in association with SA near MRAP2 (melanocortin 2 receptor accessory protein 2) and CEP162 (centrosomal protein 162); 12 genomewide significant SNPs in the region; peak SNP rs12524136‐T, OR = 2.88, p = 5.24E‐10. These findings were not replicated in the European ancestry subsamples of the replication or suicide attempters samples. However, the association of the peak SNP remained significant in a meta‐analysis of all studies and ancestral subgroups (OR = 2.18, 95%CI 1.70, 2.80). Polygenic risk score (PRS) analyses showed some association of SA with bipolar disorder. The association with SNPs encompassing MRAP2, a gene expressed in brain and adrenal cortex and involved in neural control of energy homeostasis, points to this locus as a plausible susceptibility gene for suicidality that should be further studied. Larger sample sizes will be needed to confirm and extend these findings.


BMC Genetics | 2015

Comparative genome-wide association studies of a depressive symptom phenotype in a repeated measures setting by race/ethnicity in the multi-ethnic study of atherosclerosis

Erin B. Ware; Bhramar Mukherjee; Yan V. Sun; Ana V. Diez-Roux; Sharon L.R. Kardia; Jennifer A. Smith

BackgroundTime-varying phenotypes have been studied less frequently in the context of genome-wide analyses across ethnicities, particularly for mood disorders. This study uses genome-wide association studies of depressive symptoms in a longitudinal framework and across multiple ethnicities to find common variants for depressive symptoms. Ethnicity-specific GWAS for depressive symptoms were conducted using three approaches: a baseline measure, longitudinal measures averaged over time, and a repeated measures analysis. We then used meta-analysis to jointly analyze the results across ethnicities within the Multi-ethnic Study of Atherosclerosis (MESA, n = 6,335), and then within ethnicity, across MESA and a sample from the Health and Retirement Study African- and European-Americans (HRS, n = 10,163).MethodsThis study uses genome-wide association studies of depressive symptoms in a longitudinal framework and across multiple ethnicities to find common variants for depressive symptoms. Ethnicity-specific GWAS for depressive symptoms were conducted using three approaches: a baseline measure, longitudinal measures averaged over time, and a repeated measures analysis. We then used meta-analysis to jointly analyze the results across ethnicities within the Multi-ethnic Study of Atherosclerosis (MESA, n = 6,335), and then within ethnicity, across MESA and a sample from the Health and Retirement Study African- and European-Americans (HRS, n = 10,163).ResultsSeveral novel variants were identified at the genome-wide suggestive level (5×10−8 < p-value ≤ 5×10−6) in each ethnicity for each approach to analyzing depressive symptoms. The repeated measures analyses resulted in typically smaller p-values and an increase in the number of single-nucleotide polymorphisms (SNP) reaching genome-wide suggestive level.ConclusionsFor phenotypes that vary over time, the detection of genetic predictors may be enhanced by repeated measures analyses.


Journal of Hypertension | 2017

Rare coding variants associated with blood pressure variation in 15 914 individuals of African ancestry

Priyanka Nandakumar; Dongwon Lee; Melissa Richard; Fasil Tekola-Ayele; Bamidele O. Tayo; Erin B. Ware; Yun J. Sung; Babatunde L. Salako; Adesola Ogunniyi; C. Charles Gu; Megan L. Grove; Myriam Fornage; Sharon L.R. Kardia; Charles N. Rotimi; Richard S. Cooper; Alanna C. Morrison; Georg B. Ehret; Aravinda Chakravarti

Objectives: Hypertension is a major risk factor for all cardiovascular diseases, especially among African Americans. This study focuses on identifying specific blood pressure (BP) genes using 15 914 individuals of African ancestry from eight cohorts (Africa America Diabetes Mellitus, Atherosclerosis Risk in Communities Study, Coronary Artery Risk Development in young Adults, Genetics Network, Genetic Epidemiology Network of Arteriopathy, Howard University Family Study, Hypertension Genetic Epidemiology Network, and Loyola University Chicago Cohort) to further genetic findings in this population which has generally been underrepresented in BP studies. Methods: We genotyped and performed various single variant and gene-based exome-wide analyses on 15 914 individuals on the Illumina HumanExome Beadchip v1.0 or v1.1 to test association with SBP and DBP long-term average residuals that were adjusted for age, age-squared, sex, and BMI. Results: We identified rare variants affecting SBP and DBP in 10 genes: AFF1, GAPDHS, SLC28A3, COL6A1, CRYBA2, KRBA1, SEL1L3, YOD1, CCDC13, and QSOX1. Prior experimental evidence for six of these 10 candidate genes supports their involvement in cardiovascular mechanisms, corroborating their potential roles in BP regulation. Conclusion: Although our results require replication or validation due to their low numbers of carriers, and an ethnicity-specific genotyping array may be more informative, this study, which has identified several candidate genes in this population most susceptible to hypertension, presents one of the largest African-ancestry BP studies to date and the largest including analysis of rare variants.

Collaboration


Dive into the Erin B. Ware's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Zhao

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min A. Jhun

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge