Erin Bell
Monsanto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Erin Bell.
PLOS ONE | 2012
Sasha Preuss; Robert Meister; Qingzhang Xu; Carl P. Urwin; Federico Tripodi; Steven E. Screen; Veena S. Anil; Shuquan Zhu; James A. Morrell; Grace T Liu; Oliver J. Ratcliffe; T. Lynne Reuber; Rajnish Khanna; Barry S. Goldman; Erin Bell; Todd E. Ziegler; Amanda L. McClerren; Thomas G. Ruff; Marie E. Petracek
Crop yield is a highly complex quantitative trait. Historically, successful breeding for improved grain yield has led to crop plants with improved source capacity, altered plant architecture, and increased resistance to abiotic and biotic stresses. To date, transgenic approaches towards improving crop grain yield have primarily focused on protecting plants from herbicide, insects, or disease. In contrast, we have focused on identifying genes that, when expressed in soybean, improve the intrinsic ability of the plant to yield more. Through the large scale screening of candidate genes in transgenic soybean, we identified an Arabidopsis thaliana B-box domain gene (AtBBX32) that significantly increases soybean grain yield year after year in multiple transgenic events in multi-location field trials. In order to understand the underlying physiological changes that are associated with increased yield in transgenic soybean, we examined phenotypic differences in two AtBBX32-expressing lines and found increases in plant height and node, flower, pod, and seed number. We propose that these phenotypic changes are likely the result of changes in the timing of reproductive development in transgenic soybean that lead to the increased duration of the pod and seed development period. Consistent with the role of BBX32 in A. thaliana in regulating light signaling, we show that the constitutive expression of AtBBX32 in soybean alters the abundance of a subset of gene transcripts in the early morning hours. In particular, AtBBX32 alters transcript levels of the soybean clock genes GmTOC1 and LHY-CCA1-like2 (GmLCL2). We propose that through the expression of AtBBX32 and modulation of the abundance of circadian clock genes during the transition from dark to light, the timing of critical phases of reproductive development are altered. These findings demonstrate a specific role for AtBBX32 in modulating soybean development, and demonstrate the validity of expressing single genes in crops to deliver increased agricultural productivity.
Journal of Agricultural and Food Chemistry | 2015
Tao Geng; Kang Liu; Ronald B. Frazier; Lifang Shi; Erin Bell; Kevin C. Glenn; Jason M. Ward
Gly m 4 is a key soybean allergen that causes allergic symptoms in the skin, gastrointestinal tract, or respiratory tract of sensitive individuals. To understand naturally variable levels of Gly m 4 among conventional soybean varieties, a sandwich ELISA was developed and validated using a mouse anti-Gly m 4 monoclonal antibody and a goat anti-Gly m 4 polyclonal antibody as capture and detection antibodies, respectively. The ELISA shows high specificity to Gly m 4 without any cross-reactivity to other soybean proteins and has a quantification range of 7.8-250 ng/mL using an Escherichia coli-produced recombinant Gly m 4, with 2.1 ng/mL being the limit of detection. Within the quantification range, the coefficients of variation of the intra-assay and interassay precision are less than 5 and 12%, respectively. Moreover, extraction efficiency and dilutional parallelism experiments were completed to demonstrate the assay is accurate. The validated assay was used to quantify Gly m 4 levels in 128 soybean samples from 24 conventional soybean varieties grown at 8 distinct geographical locations. There was a 13-fold difference between the least and greatest amounts of Gly m 4 concentrations among the samples, and the results demonstrate that the most significant sources of variability in Gly m 4 levels in the conventional varieties were related to location and variety.
Journal of Biological Chemistry | 2012
Qungang Qi; Ann Gibson; Xiaoran Fu; Meiying Zheng; Rosemarie Kuehn; Yongcheng Wang; Yanfei Wang; Santiago Navarro; James A. Morrell; Dongming Jiang; Grant Simmons; Erin Bell; Natalia B. Ivleva; Amanda L. McClerren; Paul Loida; Thomas G. Ruff; Marie E. Petracek; Sasha Preuss
Background: AtBBX32 is a member of the B-box protein family from A. thaliana. Its molecular mechanism is poorly understood. Results: We demonstrate functional interactions of AtBBX32 with soybean BBX62 (GmBBX62). Conclusion: The N-terminal B-box domain plays a key role in mediating the interaction between AtBBX32 and GmBBX62. Significance: Our data offer novel insight into the role of B-box domains in mediating protein-protein interactions between different plant B-box proteins. Previous studies have demonstrated that Arabidopsis thaliana BBX32 (AtBBX32) represses light signaling in A. thaliana and that expression of AtBBX32 in soybean increases grain yield in multiple locations and multiyear field trials. The BBX32 protein is a member of the B-box zinc finger family from A. thaliana and contains a single conserved Zn2+-binding B-box domain at the N terminus. Although the B-box domain is predicted to be involved in protein-protein interactions, the mechanism of interaction is poorly understood. Here, we provide in vitro and in vivo evidence demonstrating the physical and functional interactions of AtBBX32 with another B-box protein, soybean BBX62 (GmBBX62). Deletion analysis and characterization of the purified B-box domain indicate that the N-terminal B-box region of AtBBX32 interacts with GmBBX62. Computational modeling and site-directed mutagenesis of the AtBBX32 B-box region identified specific residues as critical for mediating the interaction between AtBBX32 and GmBBX62. This study defines the plant B-box as a protein interaction domain and offers novel insight into its role in mediating specific protein-protein interactions between different plant B-box proteins.
Regulatory Toxicology and Pharmacology | 2015
Cunxi Wang; Luis A. Burzio; Michael S. Koch; Andre Silvanovich; Erin Bell
DroughtGard maize was developed through constitutive expression of cold shock protein B (CSPB) from Bacillus subtilis to improve performance of maize (Zea mays) under water-limited conditions. B. subtilis commonly occurs in fermented foods and CSPB has a history of safe use. Safety studies were performed to further evaluate safety of CSPB introduced into maize. CSPB was compared to proteins found in current allergen and protein toxin databases and there are no sequence similarities between CSPB and known allergens or toxins. In order to validate the use of Escherichia coli-derived CSPB in other safety studies, physicochemical and functional characterization confirmed that the CSPB produced by DroughtGard possesses comparable molecular weight, immunoreactivity, and functional activity to CSPB produced from E. coli and that neither is glycosylated. CSPB was completely digested with sequential exposure to pepsin and pancreatin for 2 min and 30 s, respectively, suggesting that CSPB will be degraded in the mammalian digestive tract and would not be expected to be allergenic. Mice orally dosed with CSPB at 2160 mg/kg, followed by analysis of body weight gains, food consumption and clinical observations, showed no discernible adverse effects. This comprehensive safety assessment indicated that the CSPB protein from DroughtGard is safe for food and feed consumption.
Protein Expression and Purification | 2013
Cunxi Wang; Thomas C. Lee; Kathleen S. Crowley; Erin Bell
The expression of phosphinothricin N-acetyltransferase (PAT) protein in transgenic plants confers tolerance to the herbicide glufosinate. To enable the characterization of PAT protein expressed in plants, it is necessary to obtain high purity PAT protein from the transgenic grain. Because transgenically expressed proteins are typical present at very low levels (i.e. 0.1-50 μg protein/g grain), a highly specific and efficient purification protocol is required to purify them. Based on the physicochemical properties of PAT, we developed a novel purification method that is simple, time-saving, inexpensive and reproducible. The novel method employs a single chromatography step using a reactive dye resin, Reactive brown 10-agarose. Reactive brown 10 preferentially binds the PAT protein, which can then be specifically released by one of its substrates, acetyl-CoA. Using Reactive brown 10-agarose, PAT protein was purified to homogeneity from cottonseed with high recovery efficiency. As expected, the Reactive brown 10-produced PAT was enzymatically active. Other applications of the method on protein expression and purification, and development of PAT enzymatic inhibitors were also discussed.
Plant Direct | 2018
Paolo Castiglioni; Erin Bell; Adrian Lund; Alexander F. Rosenberg; Meghan Galligan; Brendan S. Hinchey; Stanislaus Bauer; Donald E. Nelson; Robert J. Bensen
Abstract Efforts to increase glycinebetaine (GB) levels in plants have been pursued as an approach to improving plant performance under stress conditions. To date, the impact of engineered levels of GB has been limited by metabolic constraints that restrict the achieved increases. We report the identification of a novel gene, GB1, that is differentially expressed in high and low GB accumulating maize genotypes. The predicted GB1 protein shows 60% identity to a putative C‐4 sterol methyl oxidase from rice. Overexpression of GB1 in maize and soybean led to dramatically higher leaf GB content in most of the transgenic lines compared to wild‐type. These results suggest that the GB1 protein is an important component of the biochemical pathways controlling GB accumulation in plants.
Journal of Agricultural and Food Chemistry | 2017
Xin Gu; Thomas C. Lee; Tao Geng; Kang Liu; Richard Thoma; Kathleen S. Crowley; Thomas C. Edrington; Jason M. Ward; Yongcheng Wang; Sherry Flint-Garcia; Erin Bell; Kevin C. Glenn
Lipid transfer protein (LTP) is the main causative agent for rare food allergic reactions to maize. This paper describes a new, validated ELISA that accurately measures maize LTP concentrations from 0.2 to 6.4 ng/mL. The levels of LTP ranged from 171 to 865 μg/g of grain, a 5.1-fold difference, across a set of 49 samples of maize B73 hybrids derived from the Nested Association Mapping (NAM) founder lines and a diverse collection of landrace accessions from North and South America. A second set of 107 unique samples from 18 commercial hybrids grown over two years across 10 U.S. states showed a comparable range of LTP level (212-751 μg/g of grain). Statistical analysis showed that genetic and environmental factors contributed 63 and 6%, respectively, to the variance in LTP levels. Therefore, the natural variation of maize LTP is up to 5-fold different across a diverse collection of varieties that have a history of safe cultivation and consumption.
Journal of Agricultural and Food Chemistry | 2018
Erin Bell; Shuichi Nakai; Luis A. Burzio
An expanding trend for genetically engineered (GE) crops is to cultivate varieties in which two or more single trait products have been combined using conventional breeding to produce a stacked trait product that provides a useful grouping of traits. Here, we report results from compositional analysis of several GE stacked trait products from maize and soybean. The results demonstrate that these products are each compositionally equivalent to a relevant non-GE comparator variety, except for predictable shifts in the fatty acid profile in the case of stacked trait products that contain a trait, MON 87705, that confers a high-oleic-acid phenotype in soybean. In each case, the conclusion on compositional equivalence for the stacked trait product reflects the conclusions obtained for the single trait products. These results provide strong support for conducting a reassessment of those regulatory guidelines that mandate explicit characterization of stacked trait products produced through conventional breeding.
Journal of Agricultural and Food Chemistry | 2017
Mary L. Taylor; Anna Bickel; Rhonda Mannion; Erin Bell; George G. Harrigan
Herbicide-tolerant crops can expand both tools for and timing of weed control strategies. MON 87708 soybean has been developed through genetic modification and confers tolerance to the dicamba herbicide. As part of the safety assessment conducted for new genetically modified (GM) crop varieties, a compositional assessment of MON 87708 was performed. Levels of key soybean nutrients and anti-nutrients in harvested MON 87708 were compared to levels of those components in a closely related non-GM variety as well as to levels measured in other conventional soybean varieties. From this analysis, MON 87708 was shown to be compositionally equivalent to its comparator. A similar analysis conducted for a stacked trait product produced by conventional breeding, MON 87708 × MON 89788, which confers tolerance to both dicamba and glyphosate herbicides, reached the same conclusion. These results are consistent with other results that demonstrate no compositional impact of genetic modification, except in those cases where an impact was an intended outcome.
Methods of Molecular Biology | 2015
Cunxi Wang; Thomas C. Lee; Kathleen S. Crowley; Erin Bell
Reactive dye purification is an affinity purification technique offering unique selectivity and high purification potential. Historically, purification of phosphinothricin acetyltransferase (PAT) has involved several steps of precipitation and column chromatography. Here, we describe a novel purification method that is simple, time-saving, inexpensive, and reproducible. The novel method employs a single chromatography step using a reactive dye resin, Reactive brown 10-agarose. Reactive brown 10 preferentially binds the PAT protein, which can then be specifically released by one of its substrates, acetyl-CoA. Using Reactive brown 10-agarose, PAT protein can be purified to homogeneity from E. coli or plant tissue with high recovery efficiency.