Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erin Bromage is active.

Publication


Featured researches published by Erin Bromage.


Journal of Immunology | 2005

B Cell Heterogeneity in the Teleost Kidney: Evidence for a Maturation Gradient from Anterior to Posterior Kidney

Patty Zwollo; Suzanne Cole; Erin Bromage; Stephen L. Kaattari

The fish immune system is quite different from the mammalian system because the anterior kidney forms the main site for hematopoiesis in this species. Using transcription factor-specific Abs derived from the murine system, together with anti-trout Ig Abs and Percoll gradient separation, we analyzed B cells from trout kidney sections and compared them to those from spleen and blood. For this study, immune cells were separated by Percoll gradients, and the resulting subpopulations were defined based on expression of B cell-specific transcription factors Pax-5 and B lymphocyte-induced maturation protein-1, as well as proliferative and Ig-secreting properties. Comparison of kidney, blood, and spleen B cell subsets suggest that 1) the anterior kidney contains mostly proliferating B cell precursors and plasma cells; 2) posterior kidney houses significant populations of (partially) activated B cells and plasmablasts; and 3) trout blood contains resting, non-Ig-secreting cells and lacks plasma cells. After LPS induction of resting B cells in vitro, the kidney and spleen have a high capacity for the generation of plasma cells, whereas the blood has virtually none. Our results indicate that trout B cell subsets are profoundly different among blood, anterior kidney, posterior kidney, and spleen. We hypothesize that developing B cells mature in the anterior side of the kidney and then migrate to sites of activation, either the spleen or the posterior kidney. Lastly, our data support the notion that the trout kidney is a complex, multifunctional immune organ with the potential to support both hemopoiesis as well as humoral immune activation.


Journal of Immunology | 2004

Plasmablast and Plasma Cell Production and Distribution in Trout Immune Tissues

Erin Bromage; Ilsa M. Kaattari; Patty Zwollo; Stephen L. Kaattari

These studies describe the in vitro and ex vivo generation of plasmablasts and plasma cells in trout (Oncorhynchus mykiss) peripheral blood and splenic and anterior kidney tissues. Cells were derived either from naive trout and cultured with the polyclonal activator, Escherichia coli LPS, or from trout that had been immunized with trinitrophenyl-keyhole limpet hemocyanin. Hydroxyurea was used to resolve populations of replicating (plasmablast) and nonreplicating (plasma cell) Ab-secreting cells (ASC). Complete inhibition of Ig secretion was only observed within the PBL. Both anterior kidney and splenic lymphocytes possessed a subset of ASCs that were hydroxyurea resistant. Thus, in vitro production of plasma cells appears to be restricted to the latter two tissues, whereas peripheral blood is exclusively restricted to the production of plasmablasts. After immunization with trinitrophenyl-keyhole limpet hemocyanin, specific ASC could be isolated from all immune organs; however, the anterior kidney contained 98% of all ASC. Late in the response (>10 wk), anterior kidney ASC secreted specific Ab for at least 15 days in culture, indicating that they were long-lived plasma cells. Cells from spleen and peripheral blood lost all capacity to secrete specific Ab in the absence of Ag. Late in the Ab response, high serum titer levels are solely the result of Ig secretion from anterior kidney plasma cells.


Journal of Immunology | 2012

Discovery and Characterization of Secretory IgD in Rainbow Trout: Secretory IgD Is Produced through a Novel Splicing Mechanism

Francisco Ramirez-Gomez; Whitney Greene; Katherine Rego; John D. Hansen; Greg Costa; Priti Kataria; Erin Bromage

The gene encoding IgH δ has been found in all species of teleosts studied to date. However, catfish (Ictalurus punctatus) is the only species of fish in which a secretory form of IgD has been characterized, and it occurs through the use of a dedicated δ-secretory exon, which is absent from all other species examined. Our studies have revealed that rainbow trout (Oncorhynchus mykiss) use a novel strategy for the generation of secreted IgD. The trout secretory δ transcript is produced via a run-on event in which the splice donor site at the end of the last constant domain exon (D7) is ignored and transcription continues until a stop codon is reached 33 nt downstream of the splice site, resulting in the production of an in-frame, 11-aa secretory tail at the end of the D7 domain. In silico analysis of several published IgD genes suggested that this unique splicing mechanism may also be used in other species of fish, reptiles, and amphibians. Alternative splicing of the secretory δ transcript resulted in two δ-H chains, which incorporated Cμ1 and variable domains. Secreted IgD was found in two heavily glycosylated isoforms, which are assembled as monomeric polypeptides associated with L chains. Secretory δ mRNA and IgD+ plasma cells were detected in all immune tissues at a lower frequency than secretory IgM. Our data demonstrate that secretory IgD is more prevalent and widespread across taxa than previously thought, and thus illustrate the potential that IgD may have a conserved role in immunity.


Journal of Immunology | 2010

The strength of B cell interaction with antigen determines the degree of IgM polymerization.

Jianmin Ye; Erin Bromage; Stephen L. Kaattari

The induction of variable disulfide polymerization of IgM in the trout (Oncorhynchus mykiss) and its effect on its half-life were examined. An association between greater Ab affinity and increased disulfide polymerization was first indicated by the observation of this increased IgM disulfide polymerization during the process of affinity maturation. A direct association between Ab affinity and disulfide polymerization was then established by the fractionation of individual sera into high- and low-affinity subpopulations, which also resulted in the partitioning of high and low degrees of disulfide polymerization. The ability of high-affinity B cells to produce more highly polymerized Abs upon Ag induction was demonstrated by in vitro Ag-driven selection. Low Ag concentrations, which elicited only high-affinity Abs, also possessed the highest degree of polymerization, whereas higher concentrations of Ag elicited a broader array of Ab affinities, yielding a lower average affinity and degree of polymerization. Half-life studies revealed that the high-affinity, highly polymerized Abs possessed longer half-lives than the lower-affinity, lightly polymerized Abs. Finally, although the affinity for Ag is associated with elevated levels of polymerization, analysis of naive Ig revealed that the degree of polymerization alone, not affinity, appears sufficient to prolong Ig half-life.


Journal of Immunology | 2013

CCR7 Is Mainly Expressed in Teleost Gills, Where It Defines an IgD+IgM− B Lymphocyte Subset

Rosario Castro; Erin Bromage; Beatriz Abós; Jaime Pignatelli; Aitor G. Granja; Alfonso Luque; Carolina Tafalla

Chemokine receptor CCR7, the receptor for both CCL19 and CCL21 chemokines, regulates the recruitment and clustering of circulating leukocytes to secondary lymphoid tissues, such as lymph nodes and Peyers patches. Even though teleost fish do not have either of these secondary lymphoid structures, we have recently reported a homolog to CCR7 in rainbow trout (Oncorhynchus mykiss). In the present work, we have studied the distribution of leukocytes bearing extracellular CCR7 in naive adult tissues by flow cytometry, observing that among the different leukocyte populations, the highest numbers of cells with membrane (mem)CCR7 were recorded in the gill (7.5 ± 2% CCR7+ cells). In comparison, head kidney, spleen, thymus, intestine, and peripheral blood possessed <5% CCR7+ cells. When CCR7 was studied at early developmental stages, we detected a progressive increase in gene expression and protein CCR7 levels in the gills throughout development. Surprisingly, the majority of the CCR7+ cells in the gills were not myeloid cells and did not express membrane CD8, IgM, nor IgT, but expressed IgD on the cell surface. In fact, most IgD+ cells in the gills expressed CCR7. Intriguingly, the IgD+CCR7+ population did not coexpress memIgM. Finally, when trout were bath challenged with viral hemorrhagic septicemia virus, the number of CCR7+ cells significantly decreased in the gills while significantly increased in head kidney. These results provide evidence of the presence of a novel memIgD+memIgM− B lymphocyte subset in trout that expresses memCCR7 and responds to viral infections. Similarities with IgD+IgM− subsets in mammals are discussed.


Analytical Biochemistry | 2009

The development and evaluation of monoclonal antibodies for the detection of polycyclic aromatic hydrocarbons

Candace Spier; Erin Bromage; Thomas M. Harris; Michael A. Unger; Stephen L. Kaattari

A highly sensitive enzyme-linked immunosorbent assay (ELISA) for the detection of 3- to 5-ring polycyclic aromatic hydrocarbons (PAHs) has been developed. A functional derivative of dibenzothiophene was synthesized and covalently linked to carrier proteins that were used to produce monoclonal antibodies (mAbs). During the conjugation step, the conjugation efficiency was improved by the presence of 25% N,N-dimethylformamide (DMF). Antibodies were selected based on a competitive inhibition assay to isolate those with the highest sensitivity for free PAHs. When using the mAb in an ELISA format, free PAHs were detected at a concentration as low as 0.1 microg/L (0.1 ppb) in aqueous samples.


Journal of Immunological Methods | 2009

The third dimension of ELISPOTs: Quantifying antibody secretion from individual plasma cells

Erin Bromage; Rebecca Stephens; Lama Hassoun

The enzyme-linked immunospot assay (ELISPOT) is a technique widely used to enumerate the number of immune cells secreting a specific protein, such as antibodies or cytokines. A limitation with the ELISPOT assay is that it can only be used to detect a single protein of interest. Recently, the ELISPOT technique has been modified to use fluorophores allowing multiple secreted proteins to be detected simultaneously. This technique has greatly enhanced the ability to identify cells secreting multiple proteins, but has not been used to its fullest potential. We wished to accurately quantify the expression of antigen-specific antibody from a single plasma cell and to determine whether plasma cells recovered from different locations had different secretion rates. To achieve this we analyzed fluorospot images quantitatively using Mira MX 7 UL Astronomy software, and coupled this data with a quantitative ELISA to determine secretion rates from individual cells. Using this technique we were able to determine that plasma cells recovered from the peripheral blood secreted the most antibody (1.667 ng/cell/12 h) while splenic antibody secreting cells the least (0.399 ng/cell/12 h). We were able to quantify a 150 fold difference in antibody secretion between cells, with most plasma cells divided into two groups, low secretors (<0.1 ng/cell) or high secretors (>2 ng/cell). We believe this technique will be particularly useful for examining the secretion ratio of two proteins secreted from an individual cell, allowing us to determine if secretion is fixed or variable.


Developmental and Comparative Immunology | 2014

Immune parameters in the intestine of wild and reared unvaccinated and vaccinated Atlantic salmon (Salmo salar L.).

Guro Løkka; Lars Austbø; Knut Falk; Erin Bromage; Per Gunnar Fjelldal; Tom Hansen; Ivar Hordvik; Erling Olaf Koppang

Forming a barrier to the outside world, the gut mucosa faces the challenge of absorbing nutrients and fluids while initiating immune reactions towards potential pathogens. As a continuation to our previous publication focusing on the regional intestinal morphology in wild caught post smolt and spawning Atlantic salmon, we here investigate selected immune parameters and compare wild, reared unvaccinated and vaccinated post smolts. We observed highest transcript levels for most immune-related genes in vaccinated post smolts followed by reared unvaccinated and finally wild post smolts, indicating that farming conditions like commercial feed and vaccination might contribute to a more alerted immune system in the gut. In all groups, higher levels of immune transcripts were observed in the second segment of mid-intestine and in the posterior segment. In the life stages and conditions investigated here, we found no indication of a previously suggested population of intestinal T cells expressing MHC class II nor RAG1 expression.


Developmental and Comparative Immunology | 2011

Transduction of binding affinity by B lymphocytes: A new dimension in immunological regulation

Jianmin Ye; Erin Bromage; Ilsa M. Kaattari; Stephen L. Kaattari

To date, immunologists have operated with two primary paradigms governing the antibody response: (1) that affinity maturation is primarily dependent upon antigen-driven selection of both the germline and somatically amended repertoires, and (2) that antibody effector function is isotypically determined. The teleost model now suggests that these classical paradigms should be broadened to incorporate the ability of the B cell to transduce the strength of antigen recognition (affinity) into structural modifications of its antibody product, which, in turn, modulates the antibodys effector function. Although this relationship, thus far, has only been examined and demonstrated in the teleost, we find a number of the individual elements of this structural/functional relationship have been reported for mammalian IgM, which prompts future investigations into its universality. In sum, these findings suggest a heretofore unrecognized feature of B lymphocyte affinity discrimination, which transduces the affinity of antigen recognition into functionally modified antibodies.


Developmental and Comparative Immunology | 2012

A holistic view of the dynamisms of teleost IgM: A case study of Streptococcus iniae vaccinated rainbow trout (Oncorhynchus mykiss)

Gregory Costa; Hillary Danz; Priti Kataria; Erin Bromage

To date, little is known about how trout IgM, the primary antibody of fish, varies in titer, specificity, disulfide cross-linking, and affinity following immunization with a pathogen. Work using defined antigens has demonstrated that the disulfide cross-linking structure of IgM becomes increasingly more polymerized during an immune response, coinciding with an increase in affinity, but it is unknown if this has relevance to aquatic pathogens. Understanding how IgM varies following vaccination with an aquatic pathogen is of considerable importance as effector functions allocated to multiple antibody isotypes in mammals are essentially relegated to this single molecule. To gain insights into the dynamism of IgM, rainbow trout were immunized with Streptococcus iniae and individual serum titers, their specificity and affinity to S. iniae, and the disulfide cross-linking pattern of both total-serum and specific Ig were analyzed over a period of 37 weeks. We found that in vaccinated animals titer increased by a factor of ≈100 from starting levels, affinity increased 10-fold, and diversity of S. iniae proteins recognized by trout antibody increased at least 5-fold. Most intriguing, though less cross-linked IgM predominated early in response, by week 5, the fully tetramerized antibody comprised 50% of total specific protein. We propose that this is a mechanism to optimize efficacy of carrying out effector functions and recognizing a wide array of epitopes with higher affinity.

Collaboration


Dive into the Erin Bromage's collaboration.

Top Co-Authors

Avatar

Stephen L. Kaattari

Virginia Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar

Jianmin Ye

Virginia Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar

Ilsa M. Kaattari

Virginia Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar

John D. Hansen

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Lawrence W. Carpenter

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Mark R. Patterson

Virginia Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar

Michael A. Unger

Virginia Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Priti Kataria

University of Massachusetts Dartmouth

View shared research outputs
Top Co-Authors

Avatar

Candace Spier

Virginia Institute of Marine Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge