Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erin E. Baschal is active.

Publication


Featured researches published by Erin E. Baschal.


Diabetes | 2008

Analysis of single nucleotide polymorphisms identifies major type 1A diabetes locus telomeric of the major histocompatibility complex.

Theresa A. Aly; Erin E. Baschal; Mohamed M. Jahromi; Maria S. Fernando; Sunanda R. Babu; Tasha E. Fingerlin; Adam Kretowski; Henry A. Erlich; Pamela R. Fain; Marian Rewers; George S. Eisenbarth

OBJECTIVE—HLA-DRB1*03-DQB1*0201/DRB1*04-DQB1*0302 (DR3/4-DQ8) siblings who share both major histocompatibility complex (MHC) haplotypes identical-by-descent with their proband siblings have a higher risk for type 1A diabetes than DR3/4-DQ8 siblings who do not share both MHC haplotypes identical-by-descent. Our goal was to search for non-DR/DQ MHC genetic determinants that cause the additional risk in the DR3/4-DQ8 siblings who share both MHC haplotypes. RESEARCH DESIGN AND METHODS—We completed an extensive single nucleotide polymorphism (SNP) analysis of the extended MHC in 237 families with type 1A diabetes from the U.S. and 1,240 families from the Type 1 Diabetes Genetics Consortium. RESULTS—We found evidence for an association with type 1A diabetes (rs1233478, P = 1.6 × 10−23, allelic odds ratio 2.0) in the UBD/MAS1L region, telomeric of the classic MHC. We also observed over 99% conservation for up to 9 million nucleotides between chromosomes containing a common haplotype with the HLA-DRB1*03, HLA-B*08, and HLA-A*01 alleles, termed the “8.1 haplotype.” The diabetes association in the UBD/MAS1L region remained significant both after chromosomes with the 8.1 haplotype were removed (rs1233478, P = 1.4 × 10−12) and after adjustment for known HLA risk factors HLA-DRB1, HLA-DQB1, HLA-B, and HLA-A (P = 0.01). CONCLUSIONS—Polymorphisms in the region of the UBD/MAS1L genes are associated with type 1A diabetes independent of HLA class II and I alleles.


Diabetes | 2007

HLA-DPB1*0402 Protects Against Type 1A Diabetes Autoimmunity in the Highest Risk DR3-DQB1*0201/DR4-DQB1*0302 DAISY Population

Erin E. Baschal; Theresa A. Aly; Sunanda R. Babu; Maria S. Fernando; Liping Yu; Dongmei Miao; Katherine Barriga; Jill M. Norris; Janelle A. Noble; Henry A. Erlich; Marian Rewers; George S. Eisenbarth

OBJECTIVE— A major goal in genetic studies of type 1A diabetes is prediction of anti-islet autoimmunity and subsequent diabetes in the general population, as >85% of patients do not have a first-degree relative with type 1A diabetes. Given prior association studies, we hypothesized that the strongest candidates for enhancing diabetes risk among DR3-DQB1*0201/DR4-DQB1*0302 individuals would be alleles of DP and DRB1*04 subtypes and, in particular, the absence of reportedly protective alleles DPB1*0402 and/or DRB1*0403. RESEARCH DESIGN AND METHODS— We genotyped 457 DR3-DQB1*0201/DR4-DQB1*0302 Diabetes Autoimmunity Study of the Young (DAISY) children (358 general population and 99 siblings/offspring of type 1 diabetic patients) at the DPB1, DQB1, and DRB1 loci using linear arrays of immobilized sequence-specific oligonucleotides, with direct sequencing to differentiate DRB1*04 subtypes. RESULTS— By survival curve analysis of DAISY children, the risk of persistently expressing anti-islet autoantibodies is ∼55% for relatives (children with a parent or sibling with type 1 diabetes) in the absence of these two protective alleles vs. 0% (P = 0.02) with either protective allele, and the risk is 20 vs. 2% (P = 0.004) for general population children. Even when the population analyzed is limited to DR3-DQB1*0201/DR4-DQB1*0302 children with DRB1*0401 (the most common DRB1*04 subtype), DPB1*0402 influences development of anti-islet autoantibodies. CONCLUSIONS— The ability to identify a major group of general population newborns with a 20% risk of anti-islet autoimmunity should enhance both studies of the environmental determinants of type 1A diabetes and the design of trials for the primary prevention of anti-islet autoimmunity.


Diabetes | 2008

Two single nucleotide polymorphisms identify the highest-risk diabetes HLA genotype: potential for rapid screening.

Jennifer M. Barker; Taylor M. Triolo; Theresa A. Aly; Erin E. Baschal; Sunanda R. Babu; Adam Kretowski; Marian Rewers; George S. Eisenbarth

OBJECTIVE—People with the HLA genotype DRB1*0301-DQA1*0501-DQB1*0201/DRB1*04-DQA1*0301-DQB1*0302 (DR3/4-DQ8) are at the highest risk of developing type 1 diabetes. We sought to find an inexpensive, rapid test to identify DR3/4-DQ8 subjects using two single nucleotide polymorphisms (SNPs). RESEARCH DESIGN AND METHODS—SNPs rs2040410 and rs7454108 were associated with DR3-DQB1*0201 and DR4-DQB1*0302. We correlated these SNPs with HLA genotypes and with publicly available data on 5,019 subjects from the Type 1 Diabetes Genetic Consortium (T1DGC). Additionally, we analyzed these SNPs in samples from 143 HLA-typed children who participated in the Diabetes Autoimmunity Study of the Young (DAISY) using Taqman probes (rs7454108) and restriction digest analysis (rs2040410). RESULTS—With a simple combinatorial rule, the SNPs of interest identified the presence or absence of the DR3/4-DQ8 genotype. A wide variety of genotypes were tested for both SNPs. In T1DGC samples, the two SNPs were 98.5% (1,173 of 1,191) sensitive and 99.7% (3,815 of 3,828) specific for DR3/4-DQ8. In the DAISY population, the test was 100% (69 of 69) sensitive and 100% (74 of 74) specific. Overall, the sensitivity and specificity for the test were 98.57 and 99.67%, respectively. CONCLUSIONS—A two-SNP screening test can identify the highest risk heterozygous genotype for type 1 diabetes in a time- and cost-effective manner.


Diabetes | 2008

Two Single Nucleotide Polymorphisms Identify Highest-Risk Diabetes Human Leukocyte Antigen Genotype: Potential for Rapid Screening

Jennifer M. Barker; Taylor M. Triolo; Theresa A. Aly; Erin E. Baschal; Sunanda R. Babu; Adam Kretowski; Marian Rewers; George S. Eisenbarth

OBJECTIVE—People with the HLA genotype DRB1*0301-DQA1*0501-DQB1*0201/DRB1*04-DQA1*0301-DQB1*0302 (DR3/4-DQ8) are at the highest risk of developing type 1 diabetes. We sought to find an inexpensive, rapid test to identify DR3/4-DQ8 subjects using two single nucleotide polymorphisms (SNPs). RESEARCH DESIGN AND METHODS—SNPs rs2040410 and rs7454108 were associated with DR3-DQB1*0201 and DR4-DQB1*0302. We correlated these SNPs with HLA genotypes and with publicly available data on 5,019 subjects from the Type 1 Diabetes Genetic Consortium (T1DGC). Additionally, we analyzed these SNPs in samples from 143 HLA-typed children who participated in the Diabetes Autoimmunity Study of the Young (DAISY) using Taqman probes (rs7454108) and restriction digest analysis (rs2040410). RESULTS—With a simple combinatorial rule, the SNPs of interest identified the presence or absence of the DR3/4-DQ8 genotype. A wide variety of genotypes were tested for both SNPs. In T1DGC samples, the two SNPs were 98.5% (1,173 of 1,191) sensitive and 99.7% (3,815 of 3,828) specific for DR3/4-DQ8. In the DAISY population, the test was 100% (69 of 69) sensitive and 100% (74 of 74) specific. Overall, the sensitivity and specificity for the test were 98.57 and 99.67%, respectively. CONCLUSIONS—A two-SNP screening test can identify the highest risk heterozygous genotype for type 1 diabetes in a time- and cost-effective manner.


The Journal of Clinical Endocrinology and Metabolism | 2009

Homozygosity of the Polymorphism MICA5.1 Identifies Extreme Risk of Progression to Overt Adrenal Insufficiency among 21-Hydroxylase Antibody-Positive Patients with Type 1 Diabetes

Taylor M. Triolo; Erin E. Baschal; Taylor K. Armstrong; Carrie S. Toews; Pamela R. Fain; Marian Rewers; Liping Yu; Dongmei Miao; George S. Eisenbarth; Peter A. Gottlieb; Jennifer M. Barker

CONTEXT Autoimmunity associated with Addisons disease (AD) can be detected by measuring 21-hydroxylase (21OH) autoantibodies. Subjects with type 1 diabetes (T1D) are at increased risk for AD. Genetic factors including HLA-DRB1*0404 and MICA have been associated with AD in populations with and without T1D. OBJECTIVE The objective of the study was to examine the effect of the MICA5.1 allele in subjects with 21OH autoantibodies on progression to AD. DESIGN Two components were used: 1) a cross-sectional study with subjects with AD identified and enrolled from September 1993 to November 2008 and 2) a cohort study prospectively following up patients with T1D who screened positive for 21OH autoantibodies. SETTING Subjects were identified from the Barbara Davis Center and through the National Adrenal Diseases Foundation. PATIENTS Sixty-three subjects with AD were referred through the National Adrenal Diseases Foundation (AD referrals). Sixty-three subjects with positive 21OH antibodies from the Barbara Davis Center were followed up for progression to AD, and 11 were diagnosed with AD (progressors). RESULTS Seventy-three percent of progressors (eight of 11) and 57% of AD referrals (36 of 63) were MICA5.1 homozygous (P = ns). Overall, 59% of patients with AD (44 of 74) were MICA5.1/5.1 compared with 17% of nonprogressors (nine of 52) (P < 0.0001) and 19% of normal DR3/4-DQB1*0302 controls (64 of 336) (P < 0.0001). CONCLUSIONS Identifying extreme risk should facilitate monitoring of progression from 21OH antibody positivity to overt AD. The HLA-DR3/0404 genotype defines high-risk subjects for adrenal autoimmunity. MICA5.1/5.1 may define those at highest risk for progression to overt AD, a feature unique to AD and distinct from T1D.


The Journal of Clinical Endocrinology and Metabolism | 2010

Haplotype Analysis Discriminates Genetic Risk for DR3-Associated Endocrine Autoimmunity and Helps Define Extreme Risk for Addison’s Disease

Peter R. Baker; Erin E. Baschal; Pam R. Fain; Taylor M. Triolo; Priyaanka Nanduri; Janet Siebert; Taylor K. Armstrong; Sunanda R. Babu; Marian Rewers; Peter A. Gottlieb; Jennifer M. Barker; George S. Eisenbarth

CONTEXT Multiple autoimmune disorders (e.g. Addisons disease, type 1 diabetes, celiac disease) are associated with HLA-DR3, but it is likely that alleles of additional genes in linkage disequilibrium with HLA-DRB1 contribute to disease. OBJECTIVE The objective of the study was to characterize major histocompatability complex (MHC) haplotypes conferring extreme risk for autoimmune Addisons disease (AD). DESIGN, SETTING, AND PARTICIPANTS Eighty-six 21-hydroxylase autoantibody-positive, nonautoimmune polyendocrine syndrome type 1, Caucasian individuals collected from 1992 to 2009 with clinical AD from 68 families (12 multiplex and 56 simplex) were genotyped for HLA-DRB1, HLA-DQB1, MICA, HLA-B, and HLA-A as well as high density MHC single-nucleotide polymorphism (SNP) analysis for 34. MAIN OUTCOME MEASURES AD and genotype were measured. RESULT Ninety-seven percent of the multiplex individuals had both HLA-DR3 and HLA-B8 vs. 60% of simplex AD patients (P = 9.72 × 10(-4)) and 13% of general population controls (P = 3.00 × 10(-19)). The genotype DR3/DR4 with B8 was present in 85% of AD multiplex patients, 24% of simplex patients, and 1.5% of control individuals (P = 4.92 × 10(-191)). The DR3-B8 haplotype of AD patients had HLA-A1 less often (47%) than controls (81%, P = 7.00 × 10(-5)) and type 1 diabetes patients (73%, P = 1.93 × 10(-3)). Analysis of 1228 SNPs across the MHC for individuals with AD revealed a shorter conserved haplotype (3.8) with the loss of the extended conserved 3.8.1 haplotype approximately halfway between HLA-B and HLA-A. CONCLUSION Extreme risk for AD, especially in multiplex families, is associated with haplotypic DR3 variants, in particular a portion (3.8) but not all of the conserved 3.8.1 haplotype.


Human Molecular Genetics | 2016

A polygenic burden of rare variants across extracellular matrix genes among individuals with adolescent idiopathic scoliosis

Gabe Haller; David M. Alvarado; Kevin McCall; Ping Yang; Carlos Cruchaga; Matthew B. Harms; Alison Goate; Marcia C. Willing; Jose A. Morcuende; Erin E. Baschal; Nancy H. Miller; Carol A. Wise; Matthew B. Dobbs; Christina A. Gurnett

Adolescent idiopathic scoliosis (AIS) is a complex inherited spinal deformity whose etiology has been elusive. While common genetic variants are associated with AIS, they explain only a small portion of disease risk. To explore the role of rare variants in AIS susceptibility, exome sequence data of 391 severe AIS cases and 843 controls of European ancestry were analyzed using a pathway burden analysis in which variants are first collapsed at the gene level then by Gene Ontology terms. Novel non-synonymous/splice-site variants in extracellular matrix genes were significantly enriched in AIS cases compared with controls (P = 6 × 10(-9), OR = 1.7, CI = 1.4-2.0). Specifically, novel variants in musculoskeletal collagen genes were present in 32% (126/391) of AIS cases compared with 17% (146/843) of in-house controls and 18% (780/4300) of EVS controls (P = 1 × 10(-9), OR = 1.9, CI = 1.6-2.4). Targeted resequencing of six collagen genes replicated this association in combined 919 AIS cases (P = 3 × 10(-12), OR = 2.2, CI = 1.8-2.7) and revealed a highly significant single-gene association with COL11A2 (P = 6 × 10(-9), OR = 3.8, CI = 2.6-7.2). Importantly, AIS cases harbor mainly non-glycine missense mutations and lack the clinical features of monogenic musculoskeletal collagenopathies. Overall, our study reveals a complex genetic architecture of AIS in which a polygenic burden of rare variants across extracellular matrix genes contributes strongly to risk.


Clinical Immunology | 2009

Defining multiple common "completely" conserved major histocompatibility complex SNP haplotypes.

Erin E. Baschal; Theresa A. Aly; Jean Jasinski; Andrea K. Steck; Janelle A. Noble; Henry A. Erlich; George S. Eisenbarth

The availability of both HLA data and genotypes for thousands of SNPs across the major histocompatibility complex (MHC) in 1240 complete families of the Type 1 Diabetes Genetics Consortium allowed us to analyze the occurrence and extent of megabase contiguous identity for founder chromosomes from unrelated individuals. We identified 82 HLA-defined haplotype groups, and within these groups, megabase regions of SNP identity were readily apparent. The conserved chromosomes within the 82 haplotype groups comprise approximately one third of the founder chromosomes. It is currently unknown whether such frequent conservation for groups of unrelated individuals is specific to the MHC, or if initial binning by highly polymorphic HLA alleles facilitated detection of a more general phenomenon within the MHC. Such common identity, specifically across the MHC, impacts type 1 diabetes susceptibility and may impact transplantation between unrelated individuals.


Diabetologia | 2011

The HLA-B*3906 allele imparts a high risk of diabetes only on specific HLA-DR/DQ haplotypes

Erin E. Baschal; Peter R. Baker; K. R. Eyring; J. C. Siebert; Jean Jasinski; George S. Eisenbarth

Aims/hypothesisWe investigated the risk associated with HLA-B*39 alleles in the context of specific HLA-DR/DQ haplotypes.MethodsWe studied a readily available dataset from the Type 1 Diabetes Genetics Consortium that consists of 2,300 affected sibling pair families genotyped for both HLA alleles and 2,837 single nucleotide polymorphisms across the major histocompatibility complex region.ResultsThe B*3906 allele significantly enhanced the risk of type 1 diabetes when present on specific HLA-DR/DQ haplotypes (DRB1*0801-DQB1*0402: p = 1.6 × 10−6, OR 25.4; DRB1*0101-DQB1*0501: p = 4.9 × 10−5, OR 10.3) but did not enhance the risk of DRB1*0401-DQB1*0302 haplotypes. In addition, the B*3901 allele enhanced risk on the DRB1*1601-DQB1*0502 haplotype (p = 3.7 × 10−3, OR 7.2).Conclusions/interpretationThese associations indicate that the B*39 alleles significantly increase risk when present on specific HLA-DR/DQ haplotypes, and HLA-B typing in concert with specific HLA-DR/DQ genotypes should facilitate genetic prediction of type 1 diabetes, particularly in a research setting.


Diabetes, Obesity and Metabolism | 2009

The frequent and conserved DR3-B8-A1 extended haplotype confers less diabetes risk than other DR3 haplotypes.

Erin E. Baschal; Theresa A. Aly; Jean Jasinski; Andrea K. Steck; Kelly Johnson; Janelle A. Noble; Henry A. Erlich; George S. Eisenbarth

Aim:  The goal of this study was to develop and implement methodology that would aid in the analysis of extended high‐density single nucleotide polymorphism (SNP) major histocompatibility complex (MHC) haplotypes combined with human leucocyte antigen (HLA) alleles in relation to type 1 diabetes risk.

Collaboration


Dive into the Erin E. Baschal's collaboration.

Top Co-Authors

Avatar

George S. Eisenbarth

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Marian Rewers

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Theresa A. Aly

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Jean Jasinski

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Jennifer M. Barker

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Nancy H. Miller

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Pamela R. Fain

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Taylor M. Triolo

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Andrea K. Steck

University of Colorado Denver

View shared research outputs
Researchain Logo
Decentralizing Knowledge