Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erin Griner is active.

Publication


Featured researches published by Erin Griner.


Cancer and Metastasis Reviews | 2012

The faces and friends of RhoGDI2

Erin Griner; Dan Theodorescu

RhoGDI2 is a guanine nucleotide dissociation inhibitor (GDI) specific for the Rho family of small GTPases that plays dual opposite roles in tumor progression, being both a promoter in tissues such as breast and a metastasis suppressor in tissues such as the bladder. Despite a clear role for this protein in modulating the invasive and metastatic process, the mechanisms through which RhoGDI2 executes these functions remain unclear. This review will highlight the current state of our knowledge regarding how RhoGDI2 functions in metastasis with a focus on bladder cancer and will also seek to highlight other potential underappreciated avenues through which this protein may affect cancer cell behavior.


Oncogene | 2013

PKCα phosphorylation of RhoGDI2 at Ser31 disrupts interactions with Rac1 and decreases GDI activity

Erin Griner; Mair E.A. Churchill; David L. Brautigan; Dan Theodorescu

Rho family GTPases control a diverse range of cellular processes, and their deregulation has been implicated in human cancer. Guanine nucleotide dissociation inhibitors (GDIs) bind and sequester GTPases in the cytosol, restricting their actions. RhoGDI2 is a member of the GDI family that acts as a metastasis suppressor in a variety of cancer types; however, very little is known about the regulation of this protein. Here, we present a mechanism for inactivation of RhoGDI2 via protein kinase C (PKC) phosphorylation of Ser31 in a region that contacts GTPases. In cells, RhoGDI2 becomes rapidly phosphorylated at Ser31 in response to phorbol 12-myristate 13-acetate stimulation. Based on the effects of pharmacological inhibitors and knockdown by siRNA, we determine that conventional type PKCα is responsible for this phosphorylation. Phospho-mimetic S31E-RhoGDI2 exhibits reduced binding to Rac1 relative to wild type, with a concomitant failure to reduce levels of activated endogenous Rac1 or remove Rac1 from membranes. These results reveal a mechanism of downregulation of RhoGDI2 activity through PKC-mediated phosphorylation of Ser31. We hypothesize that this mechanism may serve to neutralize RhoGDI2 function in tumors that express RhoGDI2 and active PKCα.


Molecular Cancer Research | 2015

RhoC Is an Unexpected Target of RhoGDI2 in Prevention of Lung Colonization of Bladder Cancer

Erin Griner; Garrett M. Dancik; James C. Costello; Charles Owens; Sunny Guin; Michael G. Edwards; David L. Brautigan; Dan Theodorescu

RhoGDI2 (ARHGDIB) suppresses metastasis in a variety of cancers but the mechanism is unclear, thus hampering development of human therapeutics. RhoGDI2 is a guanine nucleotide dissociation inhibitor (GDI) for the Rho family of GTPases thought to primarily bind to Rac1; however, Rac1 activation was not decreased by RhoGDI2 expression in bladder cancer cells. To better understand the GTPase-binding partners for RhoGDI2, a mass spectrometry–based proteomic approach was used in bladder cancer cells. As expected, endogenous RhoGDI2 coimmunoprecipitates with Rac1 and unexpectedly also with RhoC. Further analysis demonstrated that RhoGDI2 negatively regulates RhoC, as knockdown of RhoGDI2 increased RhoC activation in response to serum stimulation. Conversely, overexpression of RhoGDI2 decreased RhoC activation. RhoC promoted bladder cancer cell growth and invasion, as knockdown increased cell doubling time, decreased invasion through Matrigel, and decreased colony formation in soft agar. Importantly, RhoC knockdown reduced in vivo lung colonization by bladder cancer cells following tail vein injection in immunocompromised mice. Finally, unbiased transcriptome analysis revealed a set of genes regulated by RhoGDI2 overexpression and RhoC knockdown in bladder cancer cells. Implications: RhoGDI2 suppresses bladder cancer metastatic colonization via negative regulation of RhoC activity, providing a rationale for the development of therapeutics that target RhoC signaling. Mol Cancer Res; 13(3); 483–92. ©2014 AACR.


eLife | 2015

Registered report: A coding-independent function of gene and pseudogene mRNAs regulates tumour biology.

Israr Khan; John Kerwin; Kate Owen; Erin Griner

The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by conducting replications of selected experiments from a number of high-profile papers in the field of cancer biology. The papers, which were published between 2010 and 2012, were selected on the basis of citations and Altmetric scores (Errington et al., 2014). This Registered report describes the proposed replication plan of key experiments from ‘A coding-independent function of gene and pseudogene mRNAs regulates tumour biology’ by Poliseno et al. (2010), published in Nature in 2010. The key experiments to be replicated are reported in Figures 1D, 2F-H, and 4A. In these experiments, Poliseno and colleagues report microRNAs miR-19b and miR-20a transcriptionally suppress both PTEN and PTENP1 in prostate cancer cells (Figure 1D; Poliseno et al., 2010). Decreased expression of PTEN and/or PTENP1 resulted in downregulated PTEN protein levels (Figure 2H), downregulation of both mRNAs (Figure 2G), and increased tumor cell proliferation (Figure 2F; Poliseno et al., 2010). Furthermore, overexpression of the PTEN 3′ UTR enhanced PTENP1 mRNA abundance limiting tumor cell proliferation, providing additional evidence for the co-regulation of PTEN and PTENP1 (Figure 4A; Poliseno et al., 2010). The Reproducibility Project: Cancer Biology is collaboration between the Center for Open Science and Science Exchange, and the results of the replications will be published in eLife. DOI: http://dx.doi.org/10.7554/eLife.08245.001


BMC Cell Biology | 2013

Protein Ser/Thr phosphatase-6 is required for maintenance of E-cadherin at adherens junctions

Takashi Ohama; Lifu Wang; Erin Griner; David L. Brautigan

BackgroundEpithelial tissues depend on intercellular homodimerization of E-cadherin and loss of E-cadherin is central to the epithelial to mesenchymal transition seen in multiple human diseases. Signaling pathways regulate E-cadherin function and cellular distribution via phosphorylation of the cytoplasmic region by kinases such as casein kinases but the protein phosphatases involved have not been identified.ResultsThis study shows protein Ser/Thr phosphatase-6 catalytic subunit (PP6c) is expressed in epithelial tissue and its mRNA and protein are robustly up-regulated in epithelial cell lines at high vs. low density. PP6c accumulates at adherens junctions, not tight junctions, co-immunoprecipitates with E-cadherin-catenin complexes without a canonical SAPS subunit, and associates directly with the E-cadherin cytoplasmic tail. Inducible shRNA knockdown of PP6c dispersed E-cadherin from the cell surface and this response was reversed by chemical inhibition of casein kinase-1 and prevented by alanine substitution of Ser846 in murine E-cadherin.ConclusionsPP6c associates with E-cadherin in adherens junctions and is required to oppose casein kinase-1 to maintain cell surface localization of E-cadherin. There is feedback signaling to enhance PP6c transcription and boost protein levels in high density epithelial cells.


eLife | 2015

Registered report: Wnt activity defines colon cancer stem cells and is regulated by the microenvironment

James Evans; Anthony Essex; Hong Xin; Nurith Amitai; Lindsey T. Brinton; Erin Griner

The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by replicating selected results from a substantial number of high-profile papers in the field of cancer biology. The papers, which were published between 2010 and 2012, were selected on the basis of citations and Altmetric scores (Errington et al., 2014). This Registered report describes the proposed replication plan of key experiments from ‘Wnt activity defines colon cancer stem cells and is regulated by the microenvironment’ by Vermeulen and colleagues, published in Nature Cell Biology in 2010 (Vermeulen et al., 2010). The key experiments that will be replicated are those reported in Figures 2F, 6D, and 7E. In these experiments, Vermeulen and colleagues utilize a reporter for Wnt activity and show that colon cancer cells with high levels of Wnt activity also express cancer stem cell markers (Figure 2F; Vermeulen et al., 2010). Additionally, treatment either with conditioned medium derived from myofibroblasts or with hepatocyte growth factor restored clonogenic potential in low Wnt activity colon cancer cells in vitro (Figure 6D; Vermeulen et al., 2010) and in vivo (Figure 7E; Vermeulen et al., 2010). The Reproducibility Project: Cancer Biology is a collaboration between the Center for Open Science and Science Exchange and the results of the replications will be published in eLife. DOI: http://dx.doi.org/10.7554/eLife.07301.001


eLife | 2016

Registered report: Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET

Jake Lesnik; Travis J. Antes; Jeewon Kim; Erin Griner; Luisa Pedro

The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by conducting replications of selected experiments from a number of high-profile papers in the field of cancer biology. The papers, which were published between 2010 and 2012, were selected on the basis of citations and Altmetric scores (Errington et al., 2014). This Registered Report describes the proposed replication plan of key experiments from “Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET” by Peinado and colleagues, published in Nature Medicine in 2012 (Peinado et al., 2012). The key experiments being replicated are from Figures 4E, as well as Supplementary Figures 1C and 5A. In these experiments, Peinado and colleagues show tumor exosomes enhance metastasis to bones and lungs, which is diminished by reducing Met expression in exosomes (Peinado et al., 2012). The Reproducibility Project: Cancer Biology is a collaboration between the Center for Open Science and Science Exchange and the results of the replications will be published in eLife. DOI: http://dx.doi.org/10.7554/eLife.07383.001


eLife | 2015

Registered report: Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases.

Brad Evans; Erin Griner

The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by conducting replications of selected experiments from a number of high-profile papers in the field of cancer biology. The papers, which were published between 2010 and 2012, were selected on the basis of citations and Altmetric scores (Errington et al., 2014). This Registered report describes the proposed replication plan of key experiments from ‘Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases’ by Xu and colleagues, published in Cancer Cell in 2011 (Xu et al., 2011). The key experiments being replicated include Supplemental Figure 3I, which demonstrates that transfection with mutant forms of IDH1 increases levels of 2-hydroxyglutarate (2-HG), Figures 3A and 8A, which demonstrate changes in histone methylation after treatment with 2-HG, and Figures 3D and 7B, which show that mutant IDH1 can effect the same changes as treatment with excess 2-HG. The Reproducibility Project: Cancer Biology is a collaboration between the Center for Open Science and Science Exchange, and the results of the replications will be published by eLife. DOI: http://dx.doi.org/10.7554/eLife.07420.001


eLife | 2015

Registered report: Interactions between cancer stem cells and their niche govern metastatic colonization

Francesca Incardona; M Mehdi Doroudchi; Nawfal Ismail; Alberto Carreno; Erin Griner; Minyoung Anna Lim

The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by replicating selected results from a substantial number of high-profile papers in the field of cancer biology published between 2010 and 2012. This Registered report describes the proposed replication plan of key experiments from ‘Interactions between cancer stem cells and their niche govern metastatic colonization’ by Malanchi and colleagues, published in Nature in 2012 (Malanchi et al., 2012). The key experiments that will be replicated are those reported in Figures 2H, 3A, 3B, and S13. In these experiments, Malanchi and colleagues analyze messenger RNA levels of periostin (POSTN) in pulmonary fibroblasts, endothelial cells, and immune cells isolated from mice with micrometastases to determine which cell type is producing POSTN in the metastatic niche (Figure 2H; Malanchi et al., 2012). Additionally, they examine MMTV-PyMT control or POSTN null mice to test the effect of POSTN on primary tumor growth and metastasis (Figures 3A, 3B, and S13; Malanchi et al., 2012). The Reproducibility Project: Cancer Biology is a collaboration between the Center for Open Science and Science Exchange, and the results of the replications will be published in eLife. DOI: http://dx.doi.org/10.7554/eLife.06938.001


eLife | 2015

Registered report: The CD47-signal regulated protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors

Denise Chroscinski; Nimet Maherali; Erin Griner

The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by conducting replications of 50 papers in the field of cancer biology published between 2010 and 2012. This Registered report describes the proposed replication plan of key experiments from ‘The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors’ by Willingham et al., 2012, published in PNAS in 2012. The key experiments being replicated are those reported in Figure 6A–C and Table S4. In these experiments, Willingham et al., 2012 test the safety and efficacy of anti-CD47 antibody treatment in immune competent mice utilizing a syngeneic model of mammary tumor growth in FVB mice. The Reproducibility Project: Cancer Biology is a collaboration between the Center for Open Science and Science Exchange, and the results of the replications will be published in eLife. DOI: http://dx.doi.org/10.7554/eLife.04586.001

Collaboration


Dive into the Erin Griner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dan Theodorescu

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brad Evans

Donald Danforth Plant Science Center

View shared research outputs
Top Co-Authors

Avatar

Charles Owens

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Garrett M. Dancik

Eastern Connecticut State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge