Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erin J. Wamsley is active.

Publication


Featured researches published by Erin J. Wamsley.


The Journal of Neuroscience | 2010

Sleep Spindle Activity is Associated with the Integration of New Memories and Existing Knowledge

Jakke Tamminen; Jessica D. Payne; Robert Stickgold; Erin J. Wamsley; M. Gareth Gaskell

Sleep spindle activity has been associated with improvements in procedural and declarative memory. Here, for the first time, we looked at the role of spindles in the integration of newly learned information with existing knowledge, contrasting this with explicit recall of the new information. Two groups of participants learned novel spoken words (e.g., cathedruke) that overlapped phonologically with familiar words (e.g., cathedral). The sleep group was exposed to the novel words in the evening, followed by an initial test, a polysomnographically monitored night of sleep, and a second test in the morning. The wake group was exposed and initially tested in the morning and spent a retention interval of similar duration awake. Finally, both groups were tested a week later at the same circadian time to control for possible circadian effects. In the sleep group, participants recalled more words and recognized them faster after sleep, whereas in the wake group such changes were not observed until the final test 1 week later. Following acquisition of the novel words, recognition of the familiar words was slowed in both groups, but only after the retention interval, indicating that the novel words had been integrated into the mental lexicon following consolidation. Importantly, spindle activity was associated with overnight lexical integration in the sleep group, but not with gains in recall rate or recognition speed of the novel words themselves. Spindle activity appears to be particularly important for overnight integration of new memories with existing neocortical knowledge.


Biological Psychiatry | 2012

Reduced sleep spindles and spindle coherence in schizophrenia: mechanisms of impaired memory consolidation?

Erin J. Wamsley; Matthew A. Tucker; Ann K. Shinn; Kim E. Ono; Sophia K. McKinley; Alice V. Ely; Donald C. Goff; Robert Stickgold; Dara S. Manoach

BACKGROUND Sleep spindles are thought to induce synaptic changes and thereby contribute to memory consolidation during sleep. Patients with schizophrenia show dramatic reductions of both spindles and sleep-dependent memory consolidation, which may be causally related. METHODS To examine the relations of sleep spindle activity to sleep-dependent consolidation of motor procedural memory, 21 chronic, medicated schizophrenia outpatients and 17 healthy volunteers underwent polysomnography on two consecutive nights. On the second night, participants were trained on the finger-tapping motor sequence task (MST) at bedtime and tested the following morning. The number, density, frequency, duration, amplitude, spectral content, and coherence of stage 2 sleep spindles were compared between groups and examined in relation to overnight changes in MST performance. RESULTS Patients failed to show overnight improvement on the MST and differed significantly from control participants who did improve. Patients also exhibited marked reductions in the density (reduced 38% relative to control participants), number (reduced 36%), and coherence (reduced 19%) of sleep spindles but showed no abnormalities in the morphology of individual spindles or of sleep architecture. In patients, reduced spindle number and density predicted less overnight improvement on the MST. In addition, reduced amplitude and sigma power of individual spindles correlated with greater severity of positive symptoms. CONCLUSIONS The observed sleep spindle abnormalities implicate thalamocortical network dysfunction in schizophrenia. In addition, the findings suggest that abnormal spindle generation impairs sleep-dependent memory consolidation in schizophrenia, contributes to positive symptoms, and is a promising novel target for the treatment of cognitive deficits in schizophrenia.


Neurobiology of Learning and Memory | 2009

The role of sleep in false memory formation.

Jessica D. Payne; Daniel L. Schacter; Ruth E. Propper; Li-Wen Huang; Erin J. Wamsley; Matthew A. Tucker; Matthew P. Walker; Robert Stickgold

Memories are not stored as exact copies of our experiences. As a result, remembering is subject not only to memory failure, but to inaccuracies and distortions as well. Although such distortions are often retained or even enhanced over time, sleeps contribution to the development of false memories is unknown. Here, we report that a night of sleep increases both veridical and false recall in the Deese-Roediger-McDermott (DRM) paradigm, compared to an equivalent period of daytime wakefulness. But while veridical memory deteriorates across both wake and sleep, false memories are preferentially preserved by sleep, actually showing a non-significant improvement. The same selectivity of false over veridical memories was observed in a follow-up nap study. Unlike previous studies implicating deep, slow-wave sleep (SWS) in declarative memory consolidation, here veridical recall correlated with decreased SWS, a finding that was observed in both the overnight and nap studies. These findings lead to two counterintuitive conclusions - that under certain circumstances sleep can promote false memories over veridical ones, and SWS can be associated with impairment rather than facilitation of declarative memory consolidation. While these effects produce memories that are less accurate after sleep, these memories may, in the end, be more useful.


Current Biology | 2010

Dreaming of a Learning Task is Associated with Enhanced Sleep-Dependent Memory Consolidation

Erin J. Wamsley; Matthew A. Tucker; Jessica D. Payne; Joseph A. Benavides; Robert Stickgold

It is now well established that postlearning sleep is beneficial for human memory performance. Meanwhile, human and animal studies have demonstrated that learning-related neural activity is re-expressed during posttraining nonrapid eye movement (NREM) sleep. NREM sleep processes appear to be particularly beneficial for hippocampus-dependent forms of memory. These observations suggest that learning triggers the reactivation and reorganization of memory traces during sleep, a systems-level process that in turn enhances behavioral performance. Here, we hypothesized that dreaming about a learning experience during NREM sleep would be associated with improved performance on a hippocampus-dependent spatial memory task. Subjects were trained on a virtual navigation task and then retested on the same task 5 hr after initial training. Improved performance at retest was strongly associated with task-related dream imagery during an intervening afternoon nap. Task-related thoughts during wakefulness, in contrast, did not predict improved performance. These observations suggest that sleep-dependent memory consolidation in humans is facilitated by the offline reactivation of recently formed memories, and furthermore that dream experiences reflect this memory processing. That similar effects were not observed during wakefulness suggests that these mnemonic processes are specific to the sleep state.


The Journal of Neuroscience | 2013

The critical role of sleep spindles in hippocampal-dependent memory: a pharmacology study

Sara C. Mednick; Elizabeth A. McDevitt; James K. Walsh; Erin J. Wamsley; Martin P. Paulus; Jennifer C. Kanady; Sean P. A. Drummond

An important function of sleep is the consolidation of memories, and features of sleep, such as rapid eye movement (REM) or sleep spindles, have been shown to correlate with improvements in discrete memory domains. Because of the methodological difficulties in modulating sleep, however, a causal link between specific sleep features and human memory consolidation is lacking. Here, we experimentally manipulated specific sleep features during a daytime nap via direct pharmacological intervention. Using zolpidem (Ambien), a short-acting GABAA agonist hypnotic, we show increased sleep spindle density and decreased REM sleep compared with placebo and sodium oxybate (Xyrem). Naps with increased spindles produced significantly better verbal memory and significantly worse perceptual learning but did not affect motor learning. The experimental spindles were similar to control spindles in amplitude and frequency, suggesting that the experimental intervention enhanced normal sleep processes. Furthermore, using statistical methods, we demonstrate for the first time a critical role of spindles in human hippocampal memory performance. The gains in memory consolidation exceed sleep-alone or control conditions and demonstrate the potential for targeted, exceptional memory enhancement in healthy adults with pharmacologically modified sleep.


Journal of Psychiatric Research | 2010

Reduced overnight consolidation of procedural learning in chronic medicated schizophrenia is related to specific sleep stages.

Dara S. Manoach; Katharine N. Thakkar; Eva Stroynowski; Alice V. Ely; Sophia K. McKinley; Erin J. Wamsley; Ina Djonlagic; Mark G. Vangel; Donald C. Goff; Robert Stickgold

We previously reported that patients with schizophrenia failed to demonstrate normal sleep-dependent improvement in motor procedural learning. Here, we tested whether this failure was associated with the duration of Stage 2 sleep in the last quartile of the night (S2q4) and with spindle activity during this epoch. Fourteen patients with schizophrenia and 15 demographically matched controls performed a motor sequence task (MST) before and after a night of polysomnographically monitored sleep. Patients showed no significant overnight task improvement and significantly less than controls, who did show significant improvement. While there were no group differences in overall sleep architecture, patients showed significant reductions in fast sigma frequency power (45%) and in spindle density (43%) during S2q4 sleep at the electrode proximal to the motor cortex controlling the hand that performed the MST. Although spindle activity did not correlate with overnight improvement in either group, S2q4 sleep duration in patients significantly correlated with the plateau level of overnight improvement seen at the end of the morning testing session, and slow wave sleep (SWS) duration correlated with the delay in reaching this plateau. SWS and S2q4 sleep each predicted the initial level of overnight improvement in schizophrenia, and their product explained 77% of the variance, suggesting that both sleep stages are necessary for consolidation. These findings replicate our prior observation of reduced sleep-dependent consolidation of motor procedural learning in schizophrenia and link this deficit to specific sleep stages. They provide further evidence that sleep is an important contributor to cognitive deficits in schizophrenia.


PLOS ONE | 2012

Memory for Semantically Related and Unrelated Declarative Information: The Benefit of Sleep, the Cost of Wake

Jessica D. Payne; Matthew A. Tucker; Jeffrey M. Ellenbogen; Erin J. Wamsley; Matthew P. Walker; Daniel L. Schacter; Robert Stickgold

Numerous studies have examined sleeps influence on a range of hippocampus-dependent declarative memory tasks, from text learning to spatial navigation. In this study, we examined the impact of sleep, wake, and time-of-day influences on the processing of declarative information with strong semantic links (semantically related word pairs) and information requiring the formation of novel associations (unrelated word pairs). Participants encoded a set of related or unrelated word pairs at either 9am or 9pm, and were then tested after an interval of 30 min, 12 hr, or 24 hr. The time of day at which subjects were trained had no effect on training performance or initial memory of either word pair type. At 12 hr retest, memory overall was superior following a night of sleep compared to a day of wakefulness. However, this performance difference was a result of a pronounced deterioration in memory for unrelated word pairs across wake; there was no sleep-wake difference for related word pairs. At 24 hr retest, with all subjects having received both a full night of sleep and a full day of wakefulness, we found that memory was superior when sleep occurred shortly after learning rather than following a full day of wakefulness. Lastly, we present evidence that the rate of deterioration across wakefulness was significantly diminished when a night of sleep preceded the wake period compared to when no sleep preceded wake, suggesting that sleep served to stabilize the memories against the deleterious effects of subsequent wakefulness. Overall, our results demonstrate that 1) the impact of 12 hr of waking interference on memory retention is strongly determined by word-pair type, 2) sleep is most beneficial to memory 24 hr later if it occurs shortly after learning, and 3) sleep does in fact stabilize declarative memories, diminishing the negative impact of subsequent wakefulness.


Learning & Memory | 2010

A brief nap is beneficial for human route-learning: The role of navigation experience and EEG spectral power.

Erin J. Wamsley; Matthew A. Tucker; Jessica D. Payne; Robert Stickgold

Here, we examined the effect of a daytime nap on changes in virtual maze performance across a single day. Participants either took a short nap or remained awake following training on a virtual maze task. Post-training sleep provided a clear performance benefit at later retest, but only for those participants with prior experience navigating in a three-dimensional (3D) environment. Performance improvements in experienced players were correlated with delta-rich stage 2 sleep. Complementing observations that learning-related brain activity is reiterated during post-navigation NREM sleep in rodents, the present data demonstrate that NREM sleep confers a performance advantage for spatial memory in humans.


Sleep | 2013

The Effects of Eszopiclone on Sleep Spindles and Memory Consolidation in Schizophrenia: A Randomized Placebo-Controlled Trial

Erin J. Wamsley; Ann K. Shinn; Matthew A. Tucker; Kim E. Ono; Sophia K. McKinley; Alice V. Ely; Donald C. Goff; Robert Stickgold; Dara S. Manoach

STUDY OBJECTIVES In schizophrenia there is a dramatic reduction of sleep spindles that predicts deficient sleep-dependent memory consolidation. Eszopiclone (Lunesta), a non-benzodiazepine hypnotic, acts on γ-aminobutyric acid (GABA) neurons in the thalamic reticular nucleus where spindles are generated. We investigated whether eszopiclone could increase spindles and thereby improve memory consolidation in schizophrenia. DESIGN In a double-blind design, patients were randomly assigned to receive either placebo or 3 mg of eszopiclone. Patients completed Baseline and Treatment visits, each consisting of two consecutive nights of polysomnography. On the second night of each visit, patients were trained on the motor sequence task (MST) at bedtime and tested the following morning. SETTING Academic research center. PARTICIPANTS Twenty-one chronic, medicated schizophrenia outpatients. MEASUREMENTS AND RESULTS We compared the effects of two nights of eszopiclone vs. placebo on stage 2 sleep spindles and overnight changes in MST performance. Eszopiclone increased the number and density of spindles over baseline levels significantly more than placebo, but did not significantly enhance overnight MST improvement. In the combined eszopiclone and placebo groups, spindle number and density predicted overnight MST improvement. CONCLUSION Eszopiclone significantly increased sleep spindles, which correlated with overnight motor sequence task improvement. These findings provide partial support for the hypothesis that the spindle deficit in schizophrenia impairs sleep-dependent memory consolidation and may be ameliorated by eszopiclone. Larger samples may be needed to detect a significant effect on memory. Given the general role of sleep spindles in cognition, they offer a promising novel potential target for treating cognitive deficits in schizophrenia.


Frontiers in Human Neuroscience | 2014

Sleep spindle deficits in antipsychotic-naïve early course schizophrenia and in non-psychotic first-degree relatives

Dara S. Manoach; Charmaine Demanuele; Erin J. Wamsley; Mark G. Vangel; Debra M. Montrose; Jean M. Miewald; David J. Kupfer; Daniel J. Buysse; Robert Stickgold; Matcheri S. Keshavan

Introduction: Chronic medicated patients with schizophrenia have marked reductions in sleep spindle activity and a correlated deficit in sleep-dependent memory consolidation. Using archival data, we investigated whether antipsychotic-naïve early course patients with schizophrenia and young non-psychotic first-degree relatives of patients with schizophrenia also show reduced sleep spindle activity and whether spindle activity correlates with cognitive function and symptoms. Method: Sleep spindles during Stage 2 sleep were compared in antipsychotic-naïve adults newly diagnosed with psychosis, young non-psychotic first-degree relatives of schizophrenia patients and two samples of healthy controls matched to the patients and relatives. The relations of spindle parameters with cognitive measures and symptom ratings were examined. Results: Early course schizophrenia patients showed significantly reduced spindle activity relative to healthy controls and to early course patients with other psychotic disorders. Relatives of schizophrenia patients also showed reduced spindle activity compared with controls. Reduced spindle activity correlated with measures of executive function in early course patients, positive symptoms in schizophrenia and IQ estimates across groups. Conclusions: Like chronic medicated schizophrenia patients, antipsychotic-naïve early course schizophrenia patients and young non-psychotic relatives of individuals with schizophrenia have reduced sleep spindle activity. These findings indicate that the spindle deficit is not an antipsychotic side-effect or a general feature of psychosis. Instead, the spindle deficit may predate the onset of schizophrenia, persist throughout its course and be an endophenotype that contributes to cognitive dysfunction.

Collaboration


Dive into the Erin J. Wamsley's collaboration.

Top Co-Authors

Avatar

Robert Stickgold

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Matthew A. Tucker

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alice V. Ely

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge