Erin L. Crawford
University of Toledo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Erin L. Crawford.
Molecular Cancer | 2005
David A. Weaver; Erin L. Crawford; Kristy A. Warner; Fadel Elkhairi; Sadik A. Khuder; James C. Willey
BackgroundAlthough 40–50% of non-small cell lung cancer (NSCLC) tumors respond to cisplatin chemotherapy, there currently is no way to prospectively identify potential responders. The purpose of this study was to determine whether transcript abundance (TA) levels of twelve selected DNA repair or multi-drug resistance genes (LIG1, ERCC2, ERCC3, DDIT3, ABCC1, ABCC4, ABCC5, ABCC10, GTF2H2, XPA, XPC and XRCC1) were associated with cisplatin chemoresistance and could therefore contribute to the development of a predictive marker. Standardized RT (StaRT)-PCR, was employed to assess these genes in a set of NSCLC cell lines with a previously published range of sensitivity to cisplatin. Data were obtained in the form of target gene molecules relative to 106 β-actin (ACTB) molecules. To cancel the effect of ACTB variation among the different cell lines individual gene expression values were incorporated into ratios of one gene to another. Each two-gene ratio was compared as a single variable to chemoresistance for each of eight NSCLC cell lines using multiple regression. In an effort to validate these results, six additional lines then were evaluated.ResultsFollowing validation, single variable models best correlated with chemoresistance (p < 0.001), were ERCC2/XPC, ABCC5/GTF2H2, ERCC2/GTF2H2, XPA/XPC and XRCC1/XPC. All single variable models were examined hierarchically to achieve two variable models. The two variable model with the highest correlation was (ABCC5/GTF2H2, ERCC2/GTF2H2) with an R2 value of 0.96 (p < 0.001).ConclusionThese results provide markers suitable for assessment of small fine needle aspirate biopsies in an effort to prospectively identify cisplatin resistant tumors.
Molecular Cancer | 2005
Michael W Harr; Timothy G Graves; Erin L. Crawford; Kristy A. Warner; Cheryl Am Reed; James C. Willey
BackgroundCell proliferation control depends in part on the carefully ordered regulation of transcription factors. The p53 homolog p73, contributes to this control by directly upregulating the cyclin dependent kinase inhibitor, p21waf1/cip1. E2F1, an inducer of cell proliferation, directly upregulates p73 and in some systems upregulates p21 directly. Because of its central role in controlling cell proliferation, upregulation of p21 has been explored as a modality for treating bronchogenic carcinoma (BC). Improved understanding of p21 transcriptional regulation will facilitate identification of BC tissues that are responsive to p21-directed therapies. Toward this goal, we investigated the role that E2F1 and p73 each play in the transcriptional regulation of p21.ResultsAmong BC samples (N = 21) p21 transcript abundance (TA) levels varied over two orders of magnitude with values ranging from 400 to 120,000 (in units of molecules/106 molecules β-actin). The p21 values in many BC were high compared to those observed in normal bronchial epithelial cells (BEC) (N = 18). Among all BC samples, there was no correlation between E2F1 and p21 TA but there was positive correlation between E2F1 and p73α (p < 0.001) TA. Among BC cell lines with inactivated p53 and wild type p73 (N = 7) there was positive correlation between p73α and p21 TA (p < 0.05). Additionally, in a BC cell line in which both p53 and p73 were inactivated (H1155), E2F1 TA level was high (50,000), but p21 TA level was low (470). Transiently expressed exogenous p73α in the BC cell line Calu-1, was associated with a significant (p < 0.05) 90% increase in p21 TA and a 20% reduction in E2F1 TA. siRNA mediated reduction of p73 TA in the N417 BC cell line was associated with a significant reduction in p21 TA level (p < 0.01).Conclusionp21 TA levels vary considerably among BC patients which may be attributable to 1) genetic alterations in Rb and p53 and 2) variation in TA levels of upstream transcription factors E2F1 and p73. Here we provide evidence that p73 upregulates p21 TA in BC tissues and upregulated p21 TA may result from E2F1 upregulation of p73 but not from E2F1 directly.
Molecular Cancer | 2006
Timothy G Graves; Michael W Harr; Erin L. Crawford; James C. Willey
BackgroundDeregulated cell cycle progression and loss of proliferation control are key properties of malignant cells. In previous studies, an interactive transcript abundance index (ITAI) comprising three cell cycle control genes, [MYC × E2F1]/p21 accurately distinguished normal from malignant bronchial epithelial cells (BEC), using a cut-off threshold of 7,000. This cut-off is represented by a line with a slope of 7,000 on a bivariate plot of p21 versus [MYC × E2F1], with malignant BEC above the line and normal BEC below the line. This study was an effort to better quantify, at the transcript abundance level, the difference between normal and malignant BEC. The hypothesis was tested that experimental elevation of p21 in a malignant BEC line would decrease the value of the [MYC × E2F1]/p21 ITAI to a level below this line, resulting in loss of immortality and limited cell population doubling capacity. In order to test the hypothesis, a p21 expression vector was transfected into the A549 human bronchogenic carcinoma cell line, which has low constitutive p21 TA expression relative to normal BEC.ResultsFollowing transfection of p21, four A549/p21 clones with stable two-fold up-regulated p21 expression were isolated and expanded. For each clone, the increase in p21 transcript abundance (TA) was associated with increased total p21 protein level, more than 5-fold reduction in E2F1 TA, and 10-fold reduction in the [MYC × E2F1]/p21 ITAI to a value below the cut-off threshold. These changes in regulation of cell cycle control genes were associated with restoration of cell proliferation control. Specifically, each transfectant was capable of only 15 population doublings compared with unlimited population doublings for parental A549. This change was associated with an approximate 2-fold increase in population doubling time to 38.4 hours (from 22.3 hrs), resumption of contact-inhibition, and reduced dividing cell fraction as measured by flow cytometric DNA analysis.ConclusionThese results, likely due to increased p21-mediated down-regulation of E2F1 TA at the G1/S phase transition, are consistent with our hypothesis. Specifically, they provide experimental confirmation that a line with slope of 7,000 on the p21 versus [MYC × E2F1] bivariate plot quantifies the difference between normal and malignant BEC at the level of transcript abundance.
Cancer Research | 2009
Thomas M. Blomquist; Erin L. Crawford; D'anna N. Mullins; Youngsook Yoon; Dawn-Alita Hernandez; Sadik A. Khuder; Patricia L. Ruppel; Elizabeth Herness Peters; David J. Oldfield; Brad Austermiller; John C. Anders; James C. Willey
In previous studies, we reported that key antioxidant and DNA repair genes are regulated differently in normal bronchial epithelial cells of lung cancer cases compared with non-lung cancer controls. In an effort to develop a biomarker for lung cancer risk, we evaluated the transcript expressions of 14 antioxidant, DNA repair, and transcription factor genes in normal bronchial epithelial cells (HUGO names CAT, CEBPG, E2F1, ERCC4, ERCC5, GPX1, GPX3, GSTM3, GSTP1, GSTT1, GSTZ1, MGST1, SOD1, and XRCC1). A test comprising these 14 genes accurately identified the lung cancer cases in two case-control studies. The receiver operating characteristic-area under the curve was 0.82 (95% confidence intervals, 0.68-0.91) for the first case-control set (25 lung cancer cases and 24 controls), and 0.87 (95% confidence intervals, 0.73-0.96) for the second set (18 cases and 22 controls). For each gene included in the test, the key difference between cases and controls was altered distribution of transcript expression among cancer cases compared with controls, with more lung cancer cases expressing at both extremes among all genes (Kolmorogov-Smirnov test, D = 0.0795; P = 0.041). A novel statistical approach was used to identify the lower and upper boundaries of transcript expression that optimally classifies cases and controls for each gene. Based on the data presented here, there is an increased prevalence of lung cancer diagnosis among individuals that express a threshold number of key antioxidant, DNA repair, and transcription factor genes at either very high or very low levels in the normal airway epithelium.
Methods of Molecular Biology | 2004
James C. Willey; Erin L. Crawford; Charles Knight; Kristy A. Warner; Cheryl A. Motten; Elizabeth A. Herness; Robert Zahorchak; Timothy G. Graves
Standardized reverse transcriptase polymerase chain reaction (StaRT-PCR) is a modification of the competitive template (CT) RT method described by Gilliland et al. StaRT-PCR allows rapid, reproducible, standardized, quantitative measurement of data for many genes simultaneously. An internal standard CT is prepared for each gene, cloned to generate enough for 10(9) assays and CTs for up to 1,000 genes are mixed together. Each target gene is normalized to a reference gene to control for cDNA loaded in a standardized mixture of internal standards (SMIS) into the reaction. Each target gene and reference gene is measured relative to its respective internal standard within the SMIS. Because each target gene and reference gene is simultaneously measured relative to a known number of internal standard molecules in the SMIS, it is possible to report each gene expression measurement as a numerical value in units of target gene cDNA molecules/ 10(6) reference gene cDNA molecules. Calculation of data in this format allows for entry into a common databank, direct interexperimental comparison, and combination of values into interactive gene expression indices.
Molecular Diagnosis | 2001
Erin L. Crawford; Godfridus J. Peters; Paul Noordhuis; Marianne G. Rots; Martin Vondracek; Roland C. Grafström; Kimberly Lieuallen; Gregory G. Lennon; Robert Zahorchak; Melanie J. Georgeson; Anil Wali; John F. Lechner; Pan Sheng Fan; M. Bashar Kahaleh; Sadik A. Khuder; Kristy A. Warner; David A. Weaver; James C. Willey
AbstractBackground: A method that provides standardized data and is relatively inexpensive and capable of high throughput is a prerequisite to the development of a meaningful gene expression database suitable for conducting multi-institutional clinical studies based on expression measurement. Standardized RT (StaRT)-PCR has all these characteristics. In addition, the method must be reproducible. StaRT-PCR has high intralaboratory reproducibility. The purpose of this study is to determine whether StaRT-PCR provides similar interlaboratory reproducibility. Methods and Results: In a blinded interlaboratory study, expression of ten genes was measured by StaRT-PCR in a complementary DNA sample provided to each of four laboratories. The average coefficient of variation for interlaboratory comparison of the nine quantifiable genes was 0.48. In all laboratories, expression of one of the genes was too low to be measured. Conclusion: Because StaRT-PCR data are standardized and numerical and the method is reproducible among multiple laboratories, it will allow development of a meaningful gene expression database.
BMC Cancer | 2005
D'anna N. Mullins; Erin L. Crawford; Sadik A Khuder; Dawn-Alita Hernandez; Youngsook Yoon; James C. Willey
BackgroundCigarette smoking is the primary cause of bronchogenic carcinoma (BC), yet only 10–15% of heavy smokers develop BC and it is likely that this variation in risk is, in part, genetically determined. We previously reported a set of antioxidant genes for which transcript abundance was lower in normal bronchial epithelial cells (NBEC) of BC individuals compared to non-BC individuals. In unpublished studies of the same NBEC samples, transcript abundance values for several DNA repair genes were correlated with these antioxidant genes. From these data, we hypothesized that antioxidant and DNA repair genes are co-regulated by one or more transcription factors and that inter-individual variation in expression and/or function of one or more of these transcription factors is responsible for inter-individual variation in risk for BC.MethodsThe putative transcription factor recognition sites common to six of the antioxidant genes were identified through in silico DNA sequence analysis. The transcript abundance values of these transcription factors (n = 6) and an expanded group of antioxidant and DNA repair genes (n = 16) were measured simultaneously by quantitative PCR in NBEC of 24 non-BC and 25 BC individuals.ResultsCEBPG transcription factor was significantly (p < 0.01) correlated with eight of the antioxidant or DNA repair genes in non-BC individuals but not in BC individuals. In BC individuals the correlation with CEBPG was significantly (p < 0.01) lower than that of non-BC individuals for four of the genes (XRCC1, ERCC5, GSTP1, and SOD1) and the difference was nearly significant for GPX1. The only other transcription factor correlated with any of these five target genes in non-BC individuals was E2F1. E2F1 was correlated with GSTP1 among non-BC individuals, but in contrast to CEBPG, there was no significant difference in this correlation in non-BC individuals compared to BC individuals.ConclusionWe conclude that CEBPG is the transcription factor primarily responsible for regulating transcription of key antioxidant and DNA repair genes in non-BC individuals. Further, we conclude that the heavy smokers selected for development of BC are those who have sub-optimal regulation of antioxidant and DNA repair genes by CEBPG.
Biochemical and Biophysical Research Communications | 2002
Erin L. Crawford; Kristy A. Warner; Sadik A. Khuder; Robert Zahorchak; James C. Willey
Standardized RT-PCR (StaRT-PCR) enables numerical quantification as well as intra- and inter-laboratory comparison of gene expression. Multiplex StaRT-PCR, using two rounds of amplification, was conducted on Stratagene Universal Reference RNA. In the first round, cDNA, competitive template (CT) mix, and primers for up to 96 genes were amplified for varying numbers of cycles. Next, products from round one were diluted, combined with primers for one gene, and amplified for an additional 35 cycles. No additional cDNA or CT mix was added. Expression values obtained by uniplex and multiplex StaRT-PCRs were highly correlated (R=0.993, p<0.001). Products from round one could be diluted as much as 100,000-fold and still be quantified following round two amplification. Thus, using multiplex StaRT-PCR, 96 genes were measured in the same amount of cDNA typically used to measure one gene with uniplex StaRT-PCR. Multiplex StaRT-PCR was also used to measure 18 genes in the fine needle biopsy of a primary lung carcinoma.
PLOS ONE | 2013
Thomas M. Blomquist; Erin L. Crawford; Jennie L. Lovett; Jiyoun Yeo; Lauren M. Stanoszek; A. Levin; Jia Li; Mei Lu; Leming Shi; Kenneth L. Muldrew; James C. Willey
Whole transcriptome RNA-sequencing is a powerful tool, but is costly and yields complex data sets that limit its utility in molecular diagnostic testing. A targeted quantitative RNA-sequencing method that is reproducible and reduces the number of sequencing reads required to measure transcripts over the full range of expression would be better suited to diagnostic testing. Toward this goal, we developed a competitive multiplex PCR-based amplicon sequencing library preparation method that a) targets only the sequences of interest and b) controls for inter-target variation in PCR amplification during library preparation by measuring each transcript native template relative to a known number of synthetic competitive template internal standard copies. To determine the utility of this method, we intentionally selected PCR conditions that would cause transcript amplification products (amplicons) to converge toward equimolar concentrations (normalization) during library preparation. We then tested whether this approach would enable accurate and reproducible quantification of each transcript across multiple library preparations, and at the same time reduce (through normalization) total sequencing reads required for quantification of transcript targets across a large range of expression. We demonstrate excellent reproducibility (R2 = 0.997) with 97% accuracy to detect 2-fold change using External RNA Controls Consortium (ERCC) reference materials; high inter-day, inter-site and inter-library concordance (R2 = 0.97–0.99) using FDA Sequencing Quality Control (SEQC) reference materials; and cross-platform concordance with both TaqMan qPCR (R2 = 0.96) and whole transcriptome RNA-sequencing following “traditional” library preparation using Illumina NGS kits (R2 = 0.94). Using this method, sequencing reads required to accurately quantify more than 100 targeted transcripts expressed over a 107-fold range was reduced more than 10,000-fold, from 2.3×109 to 1.4×105 sequencing reads. These studies demonstrate that the competitive multiplex-PCR amplicon library preparation method presented here provides the quality control, reproducibility, and reduced sequencing reads necessary for development and implementation of targeted quantitative RNA-sequencing biomarkers in molecular diagnostic testing.
The Journal of Molecular Diagnostics | 2003
Kristy A. Warner; Erin L. Crawford; Aiman Zaher; Robert J. Coombs; Haitham Elsamaloty; Stacie L. Roshong-Denk; Imran Sharief; Guillermo V. Amurao; Yongsook Yoon; Amro Y. Al-Astal; Ragheb Assaly; Dawn-Alita R. Hernandez; Timothy G. Graves; Charles Knight; Michael W. Harr; Todd Sheridan; Jeffrey P. DeMuth; Robert Zahorchak; Jeffrey R. Hammersley; Dan E. Olson; Samuel J. Durham; James C. Willey
Morphological analysis of cytologic samples obtained by fine-needle aspirate (FNA) or bronchoscopy is an important method for diagnosing bronchogenic carcinoma. However, this approach has only about 65 to 80% diagnostic sensitivity. Based on previous studies, the c-myc x E2F-1/p21WAF1/CIP1 (p21 hereafter) gene expression index is highly sensitive and specific for distinguishing normal from malignant bronchial epithelial tissues. In an effort to improve sensitivity of diagnosing lung cancer in cytologic specimens, we used Standardized Reverse Transcriptase Polymerase Chain Reaction (StaRT-PCR) to measure the c-myc x E2F-1/p21 index in cDNA samples from 14 normal lung samples (6 normal lung parenchyma and 8 normal bronchial epithelial cell [NBEC] biopsies), and 16 FNA biopsies from 14 suspected tumors. Based on cytomorphologic criteria, 11 of the 14 suspected tumors were diagnosed as bronchogenic carcinoma and three specimens were non-diagnostic. Subsequent biopsy samples confirmed that the three non-diagnostic samples were derived from lung carcinomas. The index value for each bronchogenic carcinoma was above a cut-off value of 7000 and the index value of all but one normal sample was below 7000. Thus the c-myc x E2F-1/p21 index may augment cytomorphologic diagnosis of bronchogenic carcinoma biopsy samples, particularly those considered non-diagnostic by cytomorphologic criteria.