Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erin M. Goergen is active.

Publication


Featured researches published by Erin M. Goergen.


PLOS ONE | 2011

Native Perennial Grasses Show Evolutionary Response to Bromus tectorum (Cheatgrass) Invasion

Erin M. Goergen; Elizabeth A. Leger; Erin K. Espeland

Invasive species can change selective pressures on native plants by altering biotic and abiotic conditions in invaded habitats. Although invasions can lead to native species extirpation, they may also induce rapid evolutionary changes in remnant native plants. We investigated whether adult plants of five native perennial grasses exhibited trait shifts consistent with evolution in response to invasion by the introduced annual grass Bromus tectorum L. (cheatgrass), and asked how much variation there was among species and populations in the ability to grow successfully with the invader. Three hundred and twenty adult plants were collected from invaded and uninvaded communities from four locations near Reno, Nevada, USA. Each plant was divided in two and transplanted into the greenhouse. One clone was grown with B. tectorum while the other was grown alone, and we measured tolerance (ability to maintain size) and the ability to reduce size of B. tectorum for each plant. Plants from invaded populations consistently had earlier phenology than those from uninvaded populations, and in two out of four sites, invaded populations were more tolerant of B. tectorum competition than uninvaded populations. Poa secunda and one population of E. multisetus had the strongest suppressive effect on B. tectorum, and these two species were the only ones that flowered in competition with B. tectorum. Our study indicates that response to B. tectorum is a function of both location and species identity, with some, but not all, populations of native grasses showing trait shifts consistent with evolution in response to B. tectorum invasion within the Great Basin.


The Journal of Experimental Biology | 2004

Regulation of serotonin levels by multiple light-entrainable endogenous rhythms

M. Wildt; Erin M. Goergen; J.L. Benton; David C. Sandeman; Barbara S. Beltz

SUMMARY This study examined whether serotonin levels in the brain of the American lobster, Homarus americanus, are under circadian control. Using high-performance liquid chromatography and semi-quantitative immunocytochemical methods, we measured serotonin levels in the brains of lobsters at six time points during a 24-h period. Lobsters were maintained for 2 weeks on a 12 h:12 h light:dark cycle followed by 3 days of constant darkness. Under these conditions, brain serotonin levels varied rhythmically, with a peak before subjective dusk and a trough before subjective dawn. This persistent circadian rhythm in constant darkness indicates that serotonin levels are controlled by an endogenous clock. Animals exposed to a shifted light cycle for >10 days, followed by 3 days in constant darkness, demonstrate that this rhythm is light entrainable. Separate analyses of two pairs of large deutocerebral neuropils, the accessory and olfactory lobes, show that serotonin levels in these functionally distinct areas also exhibit circadian rhythms but that these rhythms are out of phase with one another. The olfactory and accessory lobe rhythms are also endogenous and light entrainable, suggesting the presence of multiple clock mechanisms regulating serotonin levels in different brain regions.


General and Comparative Endocrinology | 2008

Hormonal and synaptic influences of serotonin on adult neurogenesis

J.L. Benton; Erin M. Goergen; S.C. Rogan; Barbara S. Beltz

New neurons are incorporated into the adult brains of a variety of organisms, from humans and higher vertebrates, to non-vertebrates such as crustaceans. In virtually all of these systems serotonergic pathways appear to provide important regulatory influences over the machinery producing the new neurons. We have developed an in vitro preparation where adult neurogenesis can be maintained under highly controlled conditions, and are using this to test the influence of hormones on the production of neurons in the crustacean (Homarus americanus) brain. Serotonin levels have been manipulated in this in vitro preparation, and the resulting effects on the rate of neurogenesis have been documented. In addition we have compared in vitro influences of serotonin with results acquired from in vivo exposure of whole animals to serotonin. These experiments suggest that there are multiple mechanisms and pathways by which serotonin may regulate neurogenesis in the crustacean brain: (1) serotonin is effective in regulating neurogenesis at levels as low as 10(-10)M, suggesting that circulating serotonin may have hormonal influences on neuronal precursor cells residing in a vascular niche or the proliferation zones; (2) contrasting effects of serotonin on neurogenesis (up- vs. down-regulation) at high concentrations (10(-4)M), dependent upon whether eyestalk tissue is present or absent, indicate that serotonin elicits the release of substances from the sinus glands that are capable of suppressing neurogenesis; (3) previously demonstrated (Beltz, B.S., Benton, J.L., Sullivan, J.M., 2001. Transient uptake of serotonin by newborn olfactory projection neurons. Proc. Natl. Acad. Sci. USA 98, 12730-12735) serotonergic fibers from the dorsal giant neuron project directly into the proliferation zone in Cluster 10, suggest synaptic or local influences on neurogenesis in the proliferation zones where the final cell divisions and neuronal differentiation occur. Serotonin therefore regulates neurogenesis by multiple pathways, and the specific mode of influence is concentration-dependent.


Rangeland Ecology & Management | 2012

Postfire Seeding and Plant Community Recovery in the Great Basin

S. M. Kulpa; Elizabeth A. Leger; Erin K. Espeland; Erin M. Goergen

Abstract As wildland fire frequency increases around the globe, a better understanding of the patterns of plant community recovery in burned landscapes is needed to improve rehabilitation efforts. We measured establishment of seeded species, colonization of Bromus tectorum and other nonnative annual plants, and recovery of nonseeded native species in topographically distinct areas within five fires that burned Great Basin shrub-steppe communities in Elko County, Nevada. Plant density, frequency, and cover data were collected annually for 4 yr postfire. Vegetation composition varied among flat areas and north- and south-facing aspects, and changed over the course of the sampling period; recovery varied among sites. In general, B. tectorum densities were higher on south aspects, particularly 3 and 4 yr after fire, when densities increased dramatically relative to prefire conditions. Nonseeded native perennial grasses, forbs, and shrubs were abundant in three of the five fire sites, and were more likely to be present on north aspects and flat areas. Over time, nonseeded perennial grass densities remained relatively constant, and nonseeded forbs and shrubs increased. Seeded species were most likely to establish in flat areas, and the density of seeded perennial grasses, forbs, and shrubs decreased over time. Frequency and density measurements were highly correlated, especially for perennial species. Our results emphasize the value of considering site aspect and the potential for native regrowth when planning and monitoring restorations. For example, effective rehabilitation of south aspects may require the development of new restoration methods, whereas north aspects and flat areas in sites with a strong native component were not improved by the addition of seeded species, and may require weed control treatments, rather than reseeding, to improve recovery. Tailoring revegetation objectives, seed mixes, seeding rates, and monitoring efforts to conditions that vary within sites may lead to more cost effective and successful restoration.


International Journal of Wildland Fire | 2009

Influence of a native legume on soil N and plant response following prescribed fire in sagebrush steppe

Erin M. Goergen; Jeanne C. Chambers

Woodland expansion affects grasslands and shrublands on a global scale. Prescribed fire is a potential restoration tool, but recovery depends on nutrient availability and species responses after burning. Fire often leads to long- term losses in total nitrogen, but presence of native legumes can influence recovery through addition of fixed nitrogen. We examined the effects of prescribed fire in the central Great Basin, Nevada, USA, on density, biomass and nutrient content of a native legume, Lupinus argenteus (Pursh), and the effects of Lupinus presence and prescribed fire on soil inorganic nitrogen and on neighboring plant functional groups. We examined three treatment s-1y earpost-burn, 3 years post-burn and unburned control in three replicate blocks. Extractable soil inorganic nitrogen was variable and, despite a tendency towards increased inorganic nitrogen 1 year post-burn, differences among treatments were not significant. Extractable soil inorganic nitrogen was higher in Lupinus presence regardless of time since fire. Lupinus density increased after fire mainly owing to increased seedling numbers 3 years post-burn. Fire did not affect Lupinus tissue N and P concentrations, but cover of perennial grasses and forbs was higher in Lupinus presence. The invasive annual grass Bromus tectorum had low abundance and was unaffected by treatments. Results indicate that Lupinus has the potential to influence succession through modification of the post-fire environment.


Rangelands | 2009

Cold Desert Fire and Invasive Species Management: Resources, Strategies, Tactics, and Response

Jeanne C. Chambers; Elizabeth A. Leger; Erin M. Goergen

Cold Desert Fire and Invasive Species Management: Resources, Strategies, Tactics, and Response DOI:10.2458/azu_rangelands_v31i3_Chambers


Oecologia | 2012

Facilitation and interference of seedling establishment by a native legume before and after wildfire

Erin M. Goergen; Jeanne C. Chambers

In semi-arid ecosystems, heterogeneous resources can lead to variable seedling recruitment. Existing vegetation can influence seedling establishment by modifying the resource and physical environment. We asked how a native legume, Lupinus argenteus, modifies microenvironments in unburned and burned sagebrush steppe, and if L. argenteus presence facilitates seedling establishment of native species and the non-native annual grass, Bromus tectorum. Field treatments examined mechanisms by which L. argenteus likely influences establishment: (1) live L. argenteus; (2) dead L. argenteus; (3) no L. argenteus; (4) no L. argenteus with L. argenteus litter; (5) no L. argenteus with inert litter; and (6) mock L. argenteus. Response variables included soil nitrogen, moisture, temperature, solar radiation, and seedling establishment of the natives Elymus multisetus and Eriogonum umbellatum, and non-native B. tectorum. In both unburned and burned communities, there was higher spring soil moisture, increased shade and reduced maximum temperatures under L. argenteus canopies. Adult L. argenteus resulted in greater amounts of soil nitrogen (N) only in burned sagebrush steppe, but L. argenteus litter increased soil N under both unburned and burned conditions. Although L. argenteus negatively affected emergence and survival of B. tectorum overall, its presence increased B. tectorum biomass and reproduction in unburned plots. However, L. argenteus had positive facilitative effects on size and survival of E. multisetus in both unburned and burned plots. Our study indicates that L. argenteus can facilitate seedling establishment in semi-arid systems, but net effects depend on the species examined, traits measured, and level of abiotic stress.


Journal of Neurobiology | 2002

Circadian control of neurogenesis.

Erin M. Goergen; Leslie A. Bagay; Kris Rehm; Jeanne L. Benton; Barbara S. Beltz


Restoration Ecology | 2005

Experimental Restoration of an Indigenous Hawaiian Grassland after Invasion by Buffel Grass (Cenchrus ciliaris)

Curtis C. Daehler; Erin M. Goergen


International Journal of Plant Sciences | 2001

REPRODUCTIVE ECOLOGY OF A NATIVE HAWAIIAN GRASS (HETEROPOGON CONTORTUS; POACEAE) VERSUS ITS INVASIVE ALIEN COMPETITOR (PENNISETUM SETACEUM; POACEAE)

Erin M. Goergen; Curtis C. Daehler

Collaboration


Dive into the Erin M. Goergen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erin K. Espeland

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Jeanne C. Chambers

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jay Davison

University of Nevada Cooperative Extension

View shared research outputs
Top Co-Authors

Avatar

Lauren M. Porensky

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge