Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erin N. Bray is active.

Publication


Featured researches published by Erin N. Bray.


BioScience | 2011

Large-scale Flow Experiments for Managing River Systems

Christopher P. Konrad; Julian D. Olden; David A. Lytle; Theodore S. Melis; John C. Schmidt; Erin N. Bray; Mary C. Freeman; Keith B. Gido; Nina P. Hemphill; Mark J. Kennard; Laura E. McMullen; Meryl C. Mims; Mark Pyron; Christopher T. Robinson; John G. Williams

Experimental manipulations of streamflow have been used globally in recent decades to mitigate the impacts of dam operations on river systems. Rivers are challenging subjects for experimentation, because they are open systems that cannot be isolated from their social context. We identify principles to address the challenges of conducting effective large-scale flow experiments. Flow experiments have both scientific and social value when they help to resolve specific questions about the ecological action of flow with a clear nexus to water policies and decisions. Water managers must integrate new information into operating policies for large-scale experiments to be effective. Modeling and monitoring can be integrated with experiments to analyze long-term ecological responses. Experimental design should include spatially extensive observations and well-defined, repeated treatments. Large-scale flow manipulations are only a part of dam operations that affect river systems. Scientists can ensure that experimental manipulations continue to be a valuable approach for the scientifically based management of river systems.


Frontiers in Ecology and the Environment | 2014

Are large-scale flow experiments informing the science and management of freshwater ecosystems?

Julian D. Olden; Christopher P. Konrad; Theodore S. Melis; Mark J. Kennard; Mary C. Freeman; Meryl C. Mims; Erin N. Bray; Keith B. Gido; Nina P. Hemphill; David A. Lytle; Laura E. McMullen; Mark Pyron; Christopher T. Robinson; John C. Schmidt; John G. Williams

Greater scientific knowledge, changing societal values, and legislative mandates have emphasized the importance of implementing large-scale flow experiments (FEs) downstream of dams. We provide the first global assessment of FEs to evaluate their success in advancing science and informing management decisions. Systematic review of 113 FEs across 20 countries revealed that clear articulation of experimental objectives, while not universally practiced, was crucial for achieving management outcomes and changing dam-operating policies. Furthermore, changes to dam operations were three times less likely when FEs were conducted primarily for scientific purposes. Despite the recognized importance of riverine flow regimes, four-fifths of FEs involved only discrete flow events. Over three-quarters of FEs documented both abiotic and biotic outcomes, but only one-third examined multiple taxonomic responses, thus limiting how FE results can inform holistic dam management. Future FEs will present new opportunities to advance scientifically credible water policies.


Environmental Science & Technology | 2014

Attenuation Coefficients for Water Quality Trading

Arturo A. Keller; Xiaoli Chen; Jessica Fox; Matt Fulda; Rebecca Dorsey; Briana Seapy; Julia Glenday; Erin N. Bray

Water quality trading has been proposed as a cost-effective approach for reducing nutrient loads through credit generation from agricultural or point source reductions sold to buyers facing costly options. We present a systematic approach to determine attenuation coefficients and their uncertainty. Using a process-based model, we determine attenuation with safety margins at many watersheds for total nitrogen (TN) and total phosphorus (TP) loads as they transport from point of load reduction to the credit buyer. TN and TP in-stream attenuation generally increases with decreasing mean river flow; smaller rivers in the modeled region of the Ohio River Basin had TN attenuation factors per km, including safety margins, of 0.19-1.6%, medium rivers of 0.14-1.2%, large rivers of 0.13-1.1%, and very large rivers of 0.04-0.42%. Attenuation in ditches transporting nutrients from farms to receiving rivers is 0.4%/km for TN, while for TP attenuation in ditches can be up to 2%/km. A 95 percentile safety margin of 30-40% for TN and 6-10% for TP, applied to the attenuation per km factors, was determined from the in-stream sensitivity of load reductions to watershed model parameters. For perspective, over 50 km a 1% per km factor would result in 50% attenuation = 2:1 trading ratio.


Earth Surface Processes and Landforms | 2017

Observations of bedload transport in a gravel bed river during high flow using fiber‐optic DTS methods

Erin N. Bray; Thomas Dunne

The question: “how does a streambed change over a minor flood?” does not have a clear answer due to lack of measurement methods during high flows. We investigate bedload transport and disentrainment during a 1.5-year flood by linking field measurements using fiber optic distributed temperature sensing (DTS) cable with sediment transport theory and an existing explicit analytical solution to predict depth of sediment deposition from amplitude and phase changes of the diurnal near-bed pore-water temperature. The method facilitates the study of gravel transport by using near-bed temperature time series to estimate rates of sediment deposition continuously over the duration of a high flow event coinciding with bar formation. The observations indicate that all gravel and cobble particles present were transported along the riffle at a relatively low Shields Number for the median particle size, and were re-deposited on the lee side of the bar at rates that varied over time during a constant flow. Approximately 1–6% of the bed was predicted to be mobile during the 1.5-year flood, indicating that large inactive regions of the bed, particularly between riffles, persist between years despite field observations of narrow zones of local transport and bar growth on the order of ~3–5 times the median particle size. In contrast, during a 7-year flood approximately 8–55% of the bed was predicted to become mobile, indicating that the continuous along-stream mobility required to mobilize coarse gravel through long pools and downstream the next riffle is infrequent.


Water Resources Research | 2017

Subsurface flow in lowland river gravel bars

Erin N. Bray; Thomas Dunne

Geomorphic and hydraulic processes, which form gravel bars in large lowland rivers, have distinctive characteristics that control the magnitude and spatial patterns of infiltration and exfiltration between rivers and their immediate subsurface environments. We present a bedform-infiltration relation together with a set of field measurements along two reaches of the San Joaquin River, CA to illustrate the conditions required for infiltration and exfiltration of flow between a stream and its undulating bed, and a numerical model to investigate the factors that affect paths and residence times of flow through barforms at different discharges. It is shown that asymmetry of bar morphology is a first-order control on the extent and location of infiltration, which would otherwise produce equal areas of infiltration and exfiltration under the assumption of sinusoidal bedforms. Hydraulic conductivity varies by orders of magnitude due to fine sediment accumulation and downstream coarsening related to the process of bar evolution. This systematic variability not only controls the magnitude of infiltration, but also the residence time of flow through the bed. The lowest hydraulic conductivity along the reach occurred where the difference between the topographic gradient and the water-surface gradient is at a maximum and thus where infiltration would be greatest into a homogeneous bar, indicating the importance of managing sand supply to maintain the ventilation and flow through salmon spawning riffles. Numerical simulations corroborate our interpretation that infiltration patterns and rates are controlled by distinctive features of bar morphology.


Geophysical Research Letters | 2017

Mechanics of the energy balance in large lowland rivers, and why the bed matters

Erin N. Bray; Jeff Dozier; Thomas Dunne

Author(s): Bray, EN; Dozier, J; Dunne, T | Abstract: ©2017. American Geophysical Union. All Rights Reserved. Along many rivers, dams trap sediment and water released from the dams is clear. Downstream of the dam, temperature variability along the river is controlled by climate that warms or cools the water, the flow magnitude, and the spectral properties of water and the rivers bed. Using field observations, a synoptic numerical model without calibration couples a full-spectrum radiation balance with turbulent heat fluxes, bed conduction, and a hydraulic model that estimates depth and velocity. We show that variations in the rivers temperature are sensitive to the albedo of the sediment on the bed, especially at shallow depths and smaller discharges. However, about half the solar radiation lies in a spectral range where water is highly absorptive; in these wavelengths, absorption is independent of depth. In spring and summer with many hours of sunlight, releases of cold water will have limited influence on temperatures beyond tens of kilometers downstream of a dam.


Water Resources Research | 2017

Subsurface flow in lowland river gravel bars: SUBSURFACE FLOW GRAVEL BARS

Erin N. Bray; Thomas Dunne


Geophysical Research Letters | 2017

Mechanics of the energy balance in large lowland rivers, and why the bed matters: Spectral Fluvial Energy Balance

Erin N. Bray; Jeff Dozier; Thomas Dunne


2015 AGU Fall Meeting | 2015

What Happens During a Minor Flood: Observations of Bedload Transport in a Gravel Bed River using New Methods

Erin N. Bray


2014 AGU Fall Meeting | 2014

Subsurface Flow in Gravel River Bars

Erin N. Bray

Collaboration


Dive into the Erin N. Bray's collaboration.

Top Co-Authors

Avatar

Thomas Dunne

University of California

View shared research outputs
Top Co-Authors

Avatar

Christopher P. Konrad

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeff Dozier

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge