Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erin N. Potts-Kant is active.

Publication


Featured researches published by Erin N. Potts-Kant.


American Journal of Respiratory and Critical Care Medicine | 2012

Alveolar Macrophages from Overweight/Obese Subjects with Asthma Demonstrate a Proinflammatory Phenotype

Njira L Lugogo; John W. Hollingsworth; Druhan L. Howell; Loretta G. Que; Dave Francisco; Tony D. Church; Erin N. Potts-Kant; Jennifer L. Ingram; Ying Wang; Sin-Ho Jung; Monica Kraft

RATIONALE Obesity is associated with increased prevalence and severity of asthma. Adipose tissue macrophages can contribute to the systemic proinflammatory state associated with obesity. However, it remains unknown whether alveolar macrophages have a unique phenotype in overweight/obese patients with asthma. OBJECTIVES We hypothesized that leptin levels would be increased in the bronchoalveolar lavage fluid from overweight/obese subjects and, furthermore, that leptin would alter the response of alveolar macrophages to bacterial LPS. METHODS Forty-two subjects with asthma and 46 healthy control subjects underwent research bronchoscopy. Bronchoalveolar lavage fluid from 66 was analyzed for the level of cellular inflammation, cytokines, and soluble leptin. Cultured primary macrophages from 22 subjects were exposed to LPS, leptin, or leptin plus LPS. Cytokines were measured in the supernatants. MEASUREMENTS AND MAIN RESULTS Leptin levels were increased in overweight/obese subjects, regardless of asthma status (P = 0.013), but were significantly higher in overweight/obese subjects with asthma. Observed levels of tumor necrosis factor-α were highest in overweight/obese subjects with asthma. Ex vivo studies of primary alveolar macrophages indicated that the response to LPS was most robust in alveolar macrophages from overweight/obese subjects with asthma and that preexposure to high-dose leptin enhanced the proinflammatory response. Leptin alone was sufficient to induce production of proinflammatory cytokines from macrophages derived from overweight/obese subjects with asthma. CONCLUSIONS Ex vivo studies indicate that alveolar macrophages derived from overweight/obese subjects with asthma are uniquely sensitive to leptin. This macrophage phenotype, in the context of higher levels of soluble leptin, may contribute to the pathogenesis of airway disease associated with obesity.


PLOS ONE | 2011

Hyaluronan signaling during ozone-induced lung injury requires TLR4, MyD88, and TIRAP.

Zhuowei Li; Erin N. Potts-Kant; Stavros Garantziotis; W. Michael Foster; John W. Hollingsworth

Ozone exposure is associated with exacerbation of reactive airways disease. We have previously reported that the damage-associated molecular pattern, hyaluronan, is required for the complete biological response to ambient ozone and that hyaluronan fragments signal through toll-like receptor 4 (TLR4). In this study, we further investigated the role of TLR4 adaptors in ozone–induced airway hyperresponsiveness (AHR) and the direct response to hyaluronan fragments (HA). Using a murine model of AHR, C57BL/6J, TLR4−/−, MyD88−/−, and TIRAP−/− mice were characterized for AHR after exposure to either ozone (1 ppm×3 h) or HA fragments. Animals were characterized for AHR with methacholine challenge, cellular inflammation, lung injury, and production of pro-inflammatory cytokines. Ozone-exposed C57BL/6J mice developed cellular inflammation, lung injury, pro-inflammatory cytokines, and AHR, while mice deficient in TLR4, MyD88 or TIRAP demonstrated both reduced AHR and reduced levels of pro-inflammatory cytokines including TNFα, IL-1β, MCP-1, IL-6 and KC. The level of hyaluronan was increased after inhalation of ozone in each strain of mice. Direct challenge of mice to hyaluronan resulted in AHR in C57BL/6J mice, but not in TLR4−/−, MyD88−/−, or TIRAP−/− mice. HA-induced cytokine production in wild-type mice was significantly reduced in TLR4−/−, MyD88−/−, or TIRAP−/− mice. In conclusion, our findings support that ozone-induced airway hyperresponsiveness is dependent on the HA-TLR4-MyD88-TIRAP signaling pathway.


Pediatric Research | 2013

Intra-amniotic LPS amplifies hyperoxia-induced airway hyperreactivity in neonatal rats

Chang Won Choi; Beyong Il Kim; Stanley N. Mason; Erin N. Potts-Kant; Mulugu V. Brahmajothi; Richard L. Auten

Background:We previously showed that intra-amniotic lipopolysaccharide (LPS) amplifies alveolar hypoplasia induced by postnatal hyperoxia. We determined whether the priming effect of intra-amniotic LPS amplifies hyperoxia-induced airway hyperreactivity (AHR).Methods:LPS or normal saline was injected into the amniotic cavities of pregnant rats at the 20th day of gestation. After birth, rat pups were exposed to 60% O2 or air for 14 d. On postnatal day 14, rat pups underwent forced oscillometry, which included a challenge with nebulized methacholine, and the lungs were harvested for morphological studies.Results:Hyperoxia significantly increased airway reactivity and decreased compliance. Intra-amniotic LPS further increased hyperoxia-induced AHR but did not further impair respiratory system compliance. Hyperoxia-induced changes in lung parenchymal and small airway morphology were not further altered by intra-amniotic LPS. However, combined exposure to intra-amniotic LPS and hyperoxia increased the proportion of degranulating mast cells in the hilar airways.Conclusion:Intra-amniotic LPS amplified postnatal hyperoxia-induced AHR. This was associated with increased airway mast cell degranulation, which has previously been linked with hyperoxia-induced AHR. There were no morphologic changes of parenchyma or airways that would account for the LPS augmentation of hyperoxia-induced AHR.


Environmental Health Perspectives | 2015

Retraction: Hyaluronan activation of the Nlrp3 inflammasome contributes to the development of airway hyperresponsiveness.

Feifei Feng; Zhuowei Li; Erin N. Potts-Kant; Yiming Wu; W. Michael Foster; Kristi L. Williams; John W. Hollingsworth

Background: The role of the Nlrp3 inflammasome in nonallergic airway hyperresponsiveness (AHR) has not previously been reported. Recent evidence supports both interleukin (IL) 1β and short fragments of hyaluronan (HA) as contributors to the biological response to inhaled ozone. Objective: Because extracellular secretion of IL-1β requires activation of the inflammasome, we investigated the role of the inflammasome proteins ASC, caspase1, and Nlrp3 in the biological response to ozone and HA. Methods: C57BL/6J wild-type mice and mice deficient in ASC, caspase1, or Nlrp3 were exposed to ozone (1 ppm for 3 hr) or HA followed by analysis of airway resistance, cellular inflammation, and total protein and cytokines in bronchoalveolar lavage fluid (BALF). Transcription levels of IL-1β and IL-18 were determined in two populations of lung macrophages. In addition, we examined levels of cleaved caspase1 and cleaved IL-1β as markers of inflammasome activation in isolated alveolar macrophages harvested from BALF from HA-treated mice. Results: We observed that genes of the Nlrp3 inflammasome were required for development of AHR following exposure to either ozone or HA fragments. These genes are partially required for the cellular inflammatory response to ozone. The expression of IL-1β mRNA in alveolar macrophages was up-regulated after either ozone or HA challenge and was not dependent on the Nlrp3 inflammasome. However, soluble levels of IL-1β protein were dependent on the inflammasome after challenge with either ozone or HA. HA challenge resulted in cleavage of macrophage-derived caspase1 and IL-1β, suggesting a role for alveolar macrophages in Nlrp3-dependent AHR. Conclusions: The Nlrp3 inflammasome is required for the development of ozone-induced reactive airways disease.


PLOS ONE | 2012

Innate Immune Activation by Inhaled Lipopolysaccharide, Independent of Oxidative Stress, Exacerbates Silica-Induced Pulmonary Fibrosis in Mice

David M. Brass; Jennifer Spencer; Zhuowei Li; Erin N. Potts-Kant; Sarah M. Reilly; Mary K. Dunkel; Joseph Latoche; Richard L. Auten; John W. Hollingsworth; Cheryl L. Fattman

Acute exacerbations of pulmonary fibrosis are characterized by rapid decrements in lung function. Environmental factors that may contribute to acute exacerbations remain poorly understood. We have previously demonstrated that exposure to inhaled lipopolysaccharide (LPS) induces expression of genes associated with fibrosis. To address whether exposure to LPS could exacerbate fibrosis, we exposed male C57BL/6 mice to crystalline silica, or vehicle, followed 28 days later by LPS or saline inhalation. We observed that mice receiving both silica and LPS had significantly more total inflammatory cells, more whole lung lavage MCP-1, MIP-2, KC and IL-1β, more evidence of oxidative stress and more total lung hydroxyproline than mice receiving either LPS alone, or silica alone. Blocking oxidative stress with N-acetylcysteine attenuated whole lung inflammation but had no effect on total lung hydroxyproline. These observations suggest that exposure to innate immune stimuli, such as LPS in the environment, may exacerbate stable pulmonary fibrosis via mechanisms that are independent of inflammation and oxidative stress.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2012

NAD(P)H quinone oxidoreductase 1 regulates neutrophil elastase-induced mucous cell metaplasia

Marisa Meyer; Erin N. Potts-Kant; Andrew J. Ghio; Bernard M. Fischer; W. Michael Foster; Judith A. Voynow

Mucous cell metaplasia (MCM) and neutrophil-predominant airway inflammation are pathological features of chronic inflammatory airway diseases. A signature feature of MCM is increased expression of a major respiratory tract mucin, MUC5AC. Neutrophil elastase (NE) upregulates MUC5AC in primary airway epithelial cells by generating reactive oxygen species, and this response is due in part to upregulation of NADPH quinone oxidoreductase 1 (NQO1) activity. Delivery of NE directly to the airway triggers inflammation and MCM and increases synthesis and secretion of MUC5AC protein from airway epithelial cells. We hypothesized that NE-induced MCM is mediated in vivo by NQO1. Male wild-type and Nqo1-null mice (C57BL/6 background) were exposed to human NE (50 μg) or vehicle via oropharyngeal aspiration on days 1, 4, and 7. On days 8 and 11, lung tissues and bronchoalveolar lavage (BAL) samples were obtained and evaluated for MCM, inflammation, and oxidative stress. MCM, inflammation, and production of specific cytokines, granulocyte-macrophage colony-stimulating factor, macrophage inflammatory protein-2, interleukin-4, and interleukin-5 were diminished in NE-treated Nqo1-null mice compared with NE-treated wild-type mice. However, in contrast to the role of NQO1 in vitro, we demonstrate that NE-treated Nqo1-null mice had greater levels of BAL and lung tissue lipid carbonyls and greater BAL iron on day 11, all consistent with increased oxidative stress. NQO1 is required for NE-induced inflammation and MCM. This model system demonstrates that NE-induced MCM directly correlates with inflammation, but not with oxidative stress.


The Journal of Allergy and Clinical Immunology | 2012

Mast cell TNF receptors regulate responses to Mycoplasma pneumoniae in surfactant protein A (SP-A)−/− mice

Bethany J. Hsia; Julie G. Ledford; Erin N. Potts-Kant; Vinayak S. Nikam; Njira L Lugogo; W. Michael Foster; Monica Kraft; Soman N. Abraham; Jo Rae Wright

BACKGROUND Mycoplasma pneumoniae (Mp) frequently colonizes the airways of patients with chronic asthma and likely contributes to asthma exacerbations. We previously reported that mice lacking surfactant protein A (SP-A) have increased airway hyperresponsiveness (AHR) during M pneumoniae infection versus wild-type mice mediated by TNF-α. Mast cells (MCs) have been implicated in AHR in asthma models and produce and respond to TNF-α. OBJECTIVE Determine the contribution of MC/TNF interactions to AHR in airways lacking functional SP-A during Mp infection. METHODS Bronchoalveolar lavage fluid was collected from healthy and asthmatic subjects to examine TNF-α levels and M pneumoniae positivity. To determine how SP-A interactions with MCs regulate airway homeostasis, we generated mice lacking both SP-A and MCs (SP-A(-/-)Kit(W-sh/W-sh)) and infected them with M pneumoniae. RESULTS Our findings indicate that high TNF-α levels correlate with M pneumoniae positivity in human asthmatic patients and that human SP-A inhibits M pneumoniae-stimulated transcription and release of TNF-α by MCs, implicating a protective role for SP-A. MC numbers increase in M pneumoniae-infected lungs, and airway reactivity is dramatically attenuated when MCs are absent. Using SP-A(-/-)Kit(W-sh/W-sh) mice engrafted with TNF-α(-/-) or TNF receptor (TNF-R)(-/-) MCs, we found that TNF-α activation of MCs through the TNF-R, but not MC-derived TNF-α, leads to augmented AHR during M pneumoniae infection when SP-A is absent. Additionally, M pneumoniae-infected SP-A(-/-)Kit(W-sh/W-sh) mice engrafted with TNF-α(-/-) or TNF-R(-/-) MCs have decreased mucus production compared with that seen in mice engrafted with wild-type MCs, whereas burden was unaffected. CONCLUSION Our data highlight a previously unappreciated but vital role for MCs as secondary responders to TNF-α during the host response to pathogen infection.


Journal of Biological Chemistry | 2013

NADPH:Quinone Oxidoreductase 1 Regulates Host Susceptibility to Ozone via Isoprostane Generation

Apparao B. Kummarapurugu; Bernard M. Fischer; Shuo Zheng; Ginger L. Milne; Andrew J. Ghio; Erin N. Potts-Kant; W. Michael Foster; Erik J. Soderblom; Laura G. Dubois; M. Arthur Moseley; J. Will Thompson; Judith A. Voynow

Background: NQO1 regulates pulmonary susceptibility to ozone. Results: In NQO1-null mice, ozone exposure generates precursors of A2-isoprostane in the lung. A2-isoprostane suppresses ozone-induced IL-8 expression, inhibits NF-κB, and modifies Cys179 in IKK. Conclusion: A2-isoprostane inhibits ozone-induced NF-κB activation via IKK inhibition. Significance: This molecular mechanism explains the paradoxical observation that loss of NQO1 protects from ozone toxicity. NADPH:quinone oxidoreductase 1 (NQO1) is recognized as a major susceptibility gene for ozone-induced pulmonary toxicity. In the absence of NQO1 as can occur by genetic mutation, the human airway is protected from harmful effects of ozone. We recently reported that NQO1-null mice are protected from airway hyperresponsiveness and pulmonary inflammation following ozone exposure. However, NQO1 regenerates intracellular antioxidants and therefore should protect the individual from oxidative stress. To explain this paradox, we tested whether in the absence of NQO1 ozone exposure results in increased generation of A2-isoprostane, a cyclopentenone isoprostane that blunts inflammation. Using GC-MS, we found that NQO1-null mice had greater lung tissue levels of D2- and E2-isoprostanes, the precursors of J2- and A2-isoprostanes, both at base line and following ozone exposure compared with congenic wild-type mice. We confirmed in primary cultures of normal human bronchial epithelial cells that A2-isoprostane inhibited ozone-induced NF-κB activation and IL-8 regulation. Furthermore, we determined that A2-isoprostane covalently modified the active Cys179 domain in inhibitory κB kinase in the presence of ozone in vitro, thus establishing the biochemical basis for A2-isoprostane inhibition of NF-κB. Our results demonstrate that host factors may regulate pulmonary susceptibility to ozone by regulating the generation of A2-isoprostanes in the lung. These observations provide the biochemical basis for the epidemiologic observation that NQO1 regulates pulmonary susceptibility to ozone.


Journal of Allergy and Therapy | 2012

Increased Nitric Oxide Production Prevents Airway Hyperresponsiveness in Caveolin-1 Deficient Mice Following Endotoxin Exposure.

Bethany J. Hsia; Amy M. Pastva; Charles Giamberardino; Erin N. Potts-Kant; William M. Foster; Loretta G. Que; Soman N. Abraham; Wright; David Zaas

BACKGROUND Caveolin-1, the hallmark protein of caveolae, is highly expressed within the lung in the epithelium, endothelium, and in immune cells. In addition to its classical roles in cholesterol metabolism and endocytosis, caveolin-1 has also been shown to be important in inflammatory signaling pathways. In particular, caveolin-1 is known to associate with the nitric oxide synthase enzymes, downregulating their activity. Endotoxins, which are are composed mainly of lipopolysaccharide (LPS), are found ubiquitously in the environment and can lead to the development of airway inflammation and increased airway hyperresponsiveness (AHR). METHODS We compared the acute responses of wild-type and caveolin-1 deficient mice after LPS aerosol, a well-accepted mode of endotoxin exposure, to investigate the role of caveolin-1 in the development of environmental lung injury. RESULTS Although the caveolin-1 deficient mice had greater lung inflammatory indices compared to wild-type mice, they exhibited reduced AHR following LPS exposure. The uncoupling of inflammation and AHR led us to investigate the role of caveolin-1 in the production of nitric oxide, which is known to act as a bronchodilator. The absence of caveolin-1 resulted in increased nitrite levels in the lavage fluid in both sham and LPS treated mice. Additionally, inducible nitric oxide synthase expression was increased in the lung tissue of caveolin-1 deficient mice following LPS exposure and administration of the potent and specific inhibitor 1400W increased AHR to levels comparable to wild-type mice. CONCLUSIONS We attribute the relative airway hyporesponsiveness in the caveolin-1 deficient mice after LPS exposure to the specific role of caveolin-1 in mediating nitric oxide production.


Free Radical Biology and Medicine | 2012

NAD(P)H:quinone oxidoreductase 1 protects lungs from oxidant-induced emphysema in mice.

Erin N. Potts-Kant; Zhuowei Li; Robert M. Tighe; James Y. Lindsey; Benjamin W. Frush; W. Michael Foster; John W. Hollingsworth

Collaboration


Dive into the Erin N. Potts-Kant's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew J. Ghio

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge