Erin S. R. Lashinger
GlaxoSmithKline
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Erin S. R. Lashinger.
Journal of Pharmacology and Experimental Therapeutics | 2008
Kevin S. Thorneloe; Anthony C. Sulpizio; Zuojun Lin; David J. Figueroa; Angela K. Clouse; Gerald P. McCafferty; Tim P. Chendrimada; Erin S. R. Lashinger; Earl Gordon; Louise Evans; Blake A. Misajet; Douglas J. DeMarini; Josephine H. Nation; Linda N. Casillas; Robert W. Marquis; Bartholomew J. Votta; Steven A. Sheardown; Xiaoping Xu; David P. Brooks; Nicholas J. Laping; Timothy D. Westfall
Abstract The transient receptor potential vanilloid 4 (TRPV4) member of the TRP superfamily has recently been implicated in numerous physiological processes. Here we describe a small molecule TRPV4 channel activator, GSK1016790A, which we have utilized as a valuable tool in investigating the role of TRPV4 in the urinary bladder. GSK1016790A elicited Ca 2+ influx in mouse and human TRPV4 expressing HEK cells (EC 50 values of 18 and 2.1 nM, respectively), and evoked a dose-dependent activation of TRPV4 whole-cell currents at concentrations above 1 nM. In contrast the TRPV4 activator 4α-phorbol 12,13-didecanoate (4α−PDD) was 300-fold less potent than GSK1016790A in activating TRPV4 currents. TRPV4 mRNA was detected in urinary bladder smooth muscle (UBSM) and urothelium of TRPV4 +/+ mouse bladders. Western blotting and immunohistochemistry demonstrated protein expression in both the UBSM and urothelium that was absent in TRPV4 -/- bladders. TRPV4 activation with GSK1016790A contracted TRPV4The transient receptor potential (TRP) vanilloid 4 (TRPV4) member of the TRP superfamily has recently been implicated in numerous physiological processes. In this study, we describe a small molecule TRPV4 channel activator, (N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A), which we have used as a valuable tool in investigating the role of TRPV4 in the urinary bladder. GSK1016790A elicited Ca2+ influx in mouse and human TRPV4-expressing human embryonic kidney (HEK) cells (EC50 values of 18 and 2.1 nM, respectively), and it evoked a dose-dependent activation of TRPV4 whole-cell currents at concentrations above 1 nM. In contrast, the TRPV4 activator 4α-phorbol 12,13-didecanoate (4α-PDD) was 300-fold less potent than GSK1016790A in activating TRPV4 currents. TRPV4 mRNA was detected in urinary bladder smooth muscle (UBSM) and urothelium of TRPV4+/+ mouse bladders. Western blotting and immunohistochemistry demonstrated protein expression in both the UBSM and urothelium that was absent in TRPV4−/− bladders. TRPV4 activation with GSK1016790A contracted TRPV4+/+ mouse bladders in vitro, both in the presence and absence of the urothelium, an effect that was undetected in TRPV4−/− bladders. Consistent with the effects on TRPV4 HEK whole-cell currents, 4α-PDD demonstrated a weak ability to contract bladder strips compared with GSK1016790A. In vivo, urodynamics in TRPV4+/+ and TRPV4−/− mice revealed an enhanced bladder capacity in the TRPV4−/− mice. Infusion of GSK1016790A into the bladders of TRPV4+/+ mice induced bladder overactivity with no effect in TRPV4−/− mice. Overall TRPV4 plays an important role in urinary bladder function that includes an ability to contract the bladder as a result of the expression of TRPV4 in the UBSM.
Journal of Pharmacology and Experimental Therapeutics | 2008
Kevin S. Thorneloe; Anthony C. Sulpizio; Zuojun Lin; David J. Figueroa; Angela K. Clouse; Gerald P. McCafferty; Tim P. Chendrimada; Erin S. R. Lashinger; Earl Gordon; Louise Evans; Blake A. Misajet; Douglas J. DeMarini; Josephine H. Nation; Linda N. Casillas; Robert W. Marquis; Bartholomew J. Votta; Steven A. Sheardown; Xiaoping Xu; David P. Brooks; Nicholas J. Laping; Timothy D. Westfall
Abstract The transient receptor potential vanilloid 4 (TRPV4) member of the TRP superfamily has recently been implicated in numerous physiological processes. Here we describe a small molecule TRPV4 channel activator, GSK1016790A, which we have utilized as a valuable tool in investigating the role of TRPV4 in the urinary bladder. GSK1016790A elicited Ca 2+ influx in mouse and human TRPV4 expressing HEK cells (EC 50 values of 18 and 2.1 nM, respectively), and evoked a dose-dependent activation of TRPV4 whole-cell currents at concentrations above 1 nM. In contrast the TRPV4 activator 4α-phorbol 12,13-didecanoate (4α−PDD) was 300-fold less potent than GSK1016790A in activating TRPV4 currents. TRPV4 mRNA was detected in urinary bladder smooth muscle (UBSM) and urothelium of TRPV4 +/+ mouse bladders. Western blotting and immunohistochemistry demonstrated protein expression in both the UBSM and urothelium that was absent in TRPV4 -/- bladders. TRPV4 activation with GSK1016790A contracted TRPV4The transient receptor potential (TRP) vanilloid 4 (TRPV4) member of the TRP superfamily has recently been implicated in numerous physiological processes. In this study, we describe a small molecule TRPV4 channel activator, (N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A), which we have used as a valuable tool in investigating the role of TRPV4 in the urinary bladder. GSK1016790A elicited Ca2+ influx in mouse and human TRPV4-expressing human embryonic kidney (HEK) cells (EC50 values of 18 and 2.1 nM, respectively), and it evoked a dose-dependent activation of TRPV4 whole-cell currents at concentrations above 1 nM. In contrast, the TRPV4 activator 4α-phorbol 12,13-didecanoate (4α-PDD) was 300-fold less potent than GSK1016790A in activating TRPV4 currents. TRPV4 mRNA was detected in urinary bladder smooth muscle (UBSM) and urothelium of TRPV4+/+ mouse bladders. Western blotting and immunohistochemistry demonstrated protein expression in both the UBSM and urothelium that was absent in TRPV4−/− bladders. TRPV4 activation with GSK1016790A contracted TRPV4+/+ mouse bladders in vitro, both in the presence and absence of the urothelium, an effect that was undetected in TRPV4−/− bladders. Consistent with the effects on TRPV4 HEK whole-cell currents, 4α-PDD demonstrated a weak ability to contract bladder strips compared with GSK1016790A. In vivo, urodynamics in TRPV4+/+ and TRPV4−/− mice revealed an enhanced bladder capacity in the TRPV4−/− mice. Infusion of GSK1016790A into the bladders of TRPV4+/+ mice induced bladder overactivity with no effect in TRPV4−/− mice. Overall TRPV4 plays an important role in urinary bladder function that includes an ability to contract the bladder as a result of the expression of TRPV4 in the UBSM.
Journal of Pharmacology and Experimental Therapeutics | 2008
Robert N. Willette; Weike Bao; Sandhya S. Nerurkar; Tian-Li Yue; Chris P. Doe; Gerald Stankus; Gregory H. Turner; Haisong Ju; Heath Thomas; Cindy E. Fishman; Anthony C. Sulpizio; David J. Behm; Sandra J. Hoffman; Zuojun Lin; Irina M. Lozinskaya; Linda N. Casillas; Min Lin; Robert E. Lee Trout; Bartholomew J. Votta; Kevin S. Thorneloe; Erin S. R. Lashinger; David J Figueroa; Robert W. Marquis; Xiaoping Xu
The transient receptor potential (TRP) vanilloid subtype 4 (V4) is a nonselective cation channel that exhibits polymodal activation and is expressed in the endothelium, where it contributes to intracellular Ca2+ homeostasis and regulation of cell volume. The purpose of the present study was to evaluate the systemic cardiovascular effects of GSK1016790A, a novel TRPV4 activator, and to examine its mechanism of action. In three species (mouse, rat, and dog), the i.v. administration of GSK1016790A induced a dose-dependent reduction in blood pressure, followed by profound circulatory collapse. In contrast, GSK1016790A had no acute cardiovascular effects in the TRPV4−/− null mouse. Hemodynamic analyses in the dog and rat demonstrate a profound reduction in cardiac output. However, GSK1016790A had no effect on rate or contractility in the isolated, buffer-perfused rat heart, and it produced potent endothelial-dependent relaxation of rodent-isolated vascular ring segments that were abolished by nitric-oxide synthase (NOS) inhibition (N-nitro-l-arginine methyl ester; l-NAME), ruthenium red, and endothelial NOS (eNOS) gene deletion. However, the in vivo circulatory collapse was not altered by NOS inhibition (l-NAME) or eNOS gene deletion but was associated with (concentration and time appropriate) profound vascular leakage and tissue hemorrhage in the lung, intestine, and kidney. TRPV4 immunoreactivity was localized in the endothelium and epithelium in the affected organs. GSK1016790A potently induced rapid electrophysiological and morphological changes (retraction/condensation) in cultured endothelial cells. In summary, inappropriate activation of TRPV4 produces acute circulatory collapse associated with endothelial activation/injury and failure of the pulmonary microvascular permeability barrier. It will be important to determine the role of TRPV4 in disorders associated with edema and microvascular congestion.
American Journal of Physiology-renal Physiology | 2008
Erin S. R. Lashinger; Matthew S. Steiginga; J. Paul Hieble; Lisa A. Leon; Scott D. Gardner; Rakesh Nagilla; Elizabeth A. Davenport; Bryan E. Hoffman; Nicholas J. Laping; Xin Su
The activation of the TRPM8 channel, a member of the large class of TRP ion channels, has been reported to be involved in overactive bladder and painful bladder syndrome, although an endogenous activator has not been identified. In this study, N-(3-aminopropyl)-2-{[(3-methylphenyl) methyl]oxy}-N-(2-thienylmethyl)benzamide hydrochloride salt (AMTB) was evaluated as a TRPM8 channel blocker and used as a tool to evaluate the effects of this class of ion channel blocker on volume-induced bladder contraction and nociceptive reflex responses to noxious bladder distension in the rat. AMTB inhibits icilin-induced TRPM8 channel activation as measured in a Ca(2+) influx assay, with a pIC(50) of 6.23. In the anesthetized rat, intravenous administration of AMTB (3 mg/kg) decreased the frequency of volume-induced bladder contractions, without reducing the amplitude of contraction. The nociceptive response was measured by analyzing both visceromotor reflex (VMR) and cardiovascular (pressor) responses to urinary bladder distension (UBD) under 1% isoflurane. AMTB (10 mg/kg) significantly attenuated reflex responses to noxious UBD to 5.42 and 56.51% of the maximal VMR response and pressor response, respectively. The ID50 value on VMR response was 2.42 +/- 0.46 mg/kg. These results demonstrate that TRPM8 channel blocker can act on the bladder afferent pathway to attenuate the bladder micturition reflex and nociceptive reflex responses in the rat. Targeting TRPM8 channel may provide a new therapeutic opportunity for overactive bladder and painful bladder syndrome.
Journal of Pharmacology and Experimental Therapeutics | 2008
Lisa A. Leon; Bryan E. Hoffman; Scott D. Gardner; Nicholas J. Laping; Christopher J. Evans; Erin S. R. Lashinger; Xin Su
The present study investigated whether β3-adrenoceptor activation acts on the bladder afferent pathway by examination of the visceromotor reflex (VMR) and pressor responses to urinary bladder distension (UBD) and whether β3-adrenoceptor activation produces urinary bladder relaxation in hyperactive spontaneously hypertensive rats (SHRs) in comparison with their normotensive control rats [Wistar-Kyoto (WKY)]. Using the VMR responses to noxious UBD as a measure of bladder afferent signal transmission, SHRs did not present a sensitized bladder phenotype. However, reduced bladder compliance accompanied by a reduced void threshold was detected in the SHR detrusor. Furthermore, the selective β3-adrenoceptor agonist disodium 5-[(2R)-2-[[(2R)-2-(3-chlorophenyl)-2-hydroxyethyl]-amino]propyl]-1,3-benzodioxole-2,2-dicarboxylate (CL-316243) (i.v.) failed to attenuate VMR or pressor responses to UBD in either SHRs or WKY rats, but it dose-dependently inhibited rhythmic contraction (RC) in SHRs. The minimal effective dose was 0.001 mg/kg. Using the same model in WKY rats, CL-316243 did not elicit significant inhibition of contractions in the bladder RC assay. These results suggest that SHRs represent abnormal efferent/detrusor function (detrusor overactivity) without mechanosensory afferent hypersensitivity. The β3-adrenoceptor agonist CL-316243 acts on the detrusor muscle to increase urine storage in SHRs.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2008
Kevin S. Thorneloe; Anna Maria Knorn; Paul E. Doetsch; Erin S. R. Lashinger; Aixue X Liu; Chris T. Bond; John P. Adelman; Mark T. Nelson
Small-conductance Ca(2+)-activated K(+) (SK) channels play an important role in regulating the frequency and in shaping urinary bladder smooth muscle (UBSM) action potentials, thereby modulating contractility. Here we investigated a role for the SK2 member of the SK family (SK1-3) utilizing: 1) mice expressing beta-galactosidase (beta-gal) under the direction of the SK2 promoter (SK2 beta-gal mice) to localize SK2 expression and 2) mice lacking SK2 gene expression (SK2(-/-) mice) to assess SK2 function. In SK2 beta-gal mice, UBSM staining was observed, but staining was undetected in the urothelium. Consistent with this, urothelial SK2 mRNA was determined to be 4% of that in UBSM. Spontaneous phasic contractions in wild-type (SK2(+/+)) UBSM strips were potentiated (259% of control) by the selective SK channel blocker apamin (EC(50) = 0.16 nM), whereas phasic contractions of SK2(-/-) strips were unaffected. Nerve-mediated contractions of SK2(+/+) UBSM strips were also increased by apamin, an effect absent in SK2(-/-) strips. Apamin increased the sensitivity of SK2(+/+) UBSM strips to electrical field stimulation, since pretreatment with apamin decreased the frequency required to reach a 50% maximal contraction (vehicle, 21 +/- 4 Hz, n = 6; apamin, 12 +/- 2 Hz, n = 7; P < 0.05). In contrast, the sensitivity of SK2(-/-) UBSM strips was unaffected by apamin. Here we provide novel insight into the molecular basis of SK channels in the urinary bladder, demonstrating that the SK2 gene is expressed in the bladder and that it is essential for the ability of SK channels to regulate UBSM contractility.
American Journal of Physiology-renal Physiology | 2008
Xin Su; Lisa A. Leon; Charlene W. Wu; Dwight M. Morrow; Jon-Paul Jaworski; J. Paul Hieble; Erin S. R. Lashinger; Jian Jin; Richard M. Edwards; Nicholas J. Laping
Prostaglandin EP3 receptors in the central nervous system (CNS) may exert an excitatory effect on urinary bladder function via modulation of bladder afferent pathways. We have studied this action, using two EP3 antagonists, (2E)-3-{1-[(2,4-dichlorophenyl)methyl]-5-fluoro-3-methyl-1H-indol-7-yl}-N-[(4,5-dichloro-2-thienyl)sulfonyl]-2-propenamide (DG041) and (2E)-N-{[5-bromo-2-(methyloxy)phenyl] sulfonyl}-3-[2-(2-naphthalenylmethyl)phenyl]-2-propenamide (CM9). DG041 and CM9 were proven to be selective EP3 antagonists with radioligand binding and functional fluorescent imaging plate reader (FLIPR) assays. Their effects on volume-induced rhythmic bladder contraction and the visceromotor reflex (VMR) response to urinary bladder distension (UBD) were evaluated in female rats after intrathecal or intracerebroventricular administration. Both DG041 and CM9 showed a high affinity for EP3 receptors at subnanomolar concentrations without significant selectivity for any splice variants. At the human EP3C receptor, both inhibited calcium influx produced by the nonselective agonist PGE2. After intrathecal or intracerebroventricular administration both CM9 and DG041 dose-dependently reduced the frequency, but not the amplitude, of the bladder rhythmic contraction. With intrathecal administration DG041 and CM9 produced a long-lasting and robust inhibition on the VMR response to UBD, whereas with intracerebroventricular injection both compounds elicited only a transient reduction of the VMR response to bladder distension. These data support the concept that EP3 receptors are involved in bladder micturition at supraspinal and spinal centers and in bladder nociception at the spinal cord. A centrally acting EP3 receptor antagonist may be useful in the control of detrusor overactivity and/or pain associated with bladder disorders.
American Journal of Physiology-renal Physiology | 2008
Xin Su; Erin S. R. Lashinger; Lisa A. Leon; Bryan E. Hoffman; J. Paul Hieble; Scott D. Gardner; Harvey E. Fries; Richard M. Edwards; Jun Li; Nicholas J. Laping
The excitatory roles of EP3 receptors at the peripheral afferent nerve innervating the rat urinary bladder have been evaluated by using the selective EP3 antagonist (2E)-3-[1-[(2,4-dichlorophenyl)methyl]-5-fluoro-3-methyl-1H-indol-7-yl]-N-[(4,5-dichloro-2-thienyl)sulfonyl]-2-propenamide (DG-041). The bladder rhythmic contraction model and a bladder pain model measuring the visceromotor reflex (VMR) to urinary bladder distension (UBD) have been used to evaluate DG-041 in female rats. In addition, male rats [spontaneously hypertensive rat (SHR), Wistar-Kyoto (WKY), and Sprague-Dawley (SD)] were anesthetized with pentobarbital sodium, and primary afferent fibers in the L6 dorsal root were isolated for recording the inhibitory response to UBD following intravenous injection of DG-041. Intravenous injection of DG-041 (10 mg/kg), a peripherally restricted EP3 receptor antagonist, significantly reduced the frequency of bladder rhythmic contraction and inhibited the VMR response to bladder distension. The magnitude of reduction of the VMR response was not different in the different strains of rats (SD, SHR, and WKY). Furthermore, quantitative characterization of the mechanosensitive properties of bladder afferent nerves in SHR, WKY, and SD rats did not show the SHR to be supersensitive to bladder distension. DG-041 selectively attenuated responses of mechanosensitive afferent nerves to UBD, with strong suppression on the slow-conducting, high-threshold afferent fibers, with equivalent activity in the three strains. We conclude that sensitization of afferent nerve activity was not one of the mechanisms of bladder hypersensitivity in SHR. EP3 receptors are involved in the regulation of bladder micturition and bladder nociception at the peripheral level.
Neurourology and Urodynamics | 2009
Lauren K. Blatt; Erin S. R. Lashinger; Nicholas J. Laping; Xin Su
We tested cardiovascular and visceromotor reflex (VMR) responses to urinary bladder distension (UBD) in urethane anesthetized rats to see if it can replicate the response pattern and the inhibition of bladder nociceptive transmission by analgesics seen in isoflurane anesthetized animals.
Archive | 2015
N. Sengupta; G. F. Gebhart; Harvey E. Fries; Richard M. Edwards; Jun Li; Nicholas J. Laping; Xin Su; Erin S. R. Lashinger; Lisa A. Leon; Bryan E. Hoffman; J. Paul Hieble; Scott D. Gardner; Angela Nickles; Dwight E. Nelson