Eriola Hoxha
University of Turin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eriola Hoxha.
Journal of Molecular Neuroscience | 2009
Enrica Boda; Alessandro Pini; Eriola Hoxha; Roberta Parolisi; Filippo Tempia
Since a growing number of studies based on the real-time reverse transcriptase polymerase chain reaction (RT-PCR) continue to be published in order to highlight genes specifically involved in brain development, maturation, and function, the identification of reference genes suitable for this kind of experiments is now an urgent need in the neuroscience field. The aim of this work was to verify the suitability of some very common housekeeping genes (such as Gapdh, 18s, and B2m) and of some relatively new control genes (such as Pgk1, Tfrc, and Gusb) during mouse brain maturation. We tested the candidate reference genes in mouse whole brain, cerebellum, brain stem, hippocampus, medial septum, frontal neocortex, and olfactory bulb. Moreover, we reported the first complete study of Pgk1 expression throughout the development and the aging of mouse brain. Although no tested gene showed to be the optimal reference for all mouse brain regions, in general, the new housekeeping genes were highly stable in most of the analyzed regions. Above all, with few exceptions, Pgk1 showed to be a reliable control for the analyzed mouse brain regions during development, maturation, and aging.
American Journal of Human Genetics | 2014
Eleonora Di Gregorio; Barbara Borroni; Elisa Giorgio; Daniela Lacerenza; Marta Ferrero; Nicola Lo Buono; Neftj Ragusa; Cecilia Mancini; Marion Gaussen; Alessandro Calcia; Nico Mitro; Eriola Hoxha; Isabella Mura; Domenico Coviello; Young Ah Moon; Christelle Tesson; Giovanna Vaula; Philippe Couarch; Laura Orsi; Eleonora Duregon; Mauro Papotti; Jean-François Deleuze; Jean Imbert; Chiara Costanzi; Alessandro Padovani; Paola Giunti; Marcel Maillet-Vioud; Alexandra Durr; Alexis Brice; Filippo Tempia
Spinocerebellar ataxias (SCAs) are a heterogeneous group of autosomal-dominant neurodegenerative disorders involving the cerebellum and 23 different genes. We mapped SCA38 to a 56 Mb region on chromosome 6p in a SCA-affected Italian family by whole-genome linkage analysis. Targeted resequencing identified a single missense mutation (c.689G>T [p.Gly230Val]) in ELOVL5. Mutation screening of 456 independent SCA-affected individuals identified the same mutation in two further unrelated Italian families. Haplotyping showed that at least two of the three families shared a common ancestor. One further missense variant (c.214C>G [p.Leu72Val]) was found in a French family. Both missense changes affect conserved amino acids, are predicted to be damaging by multiple bioinformatics tools, and were not identified in ethnically matched controls or within variant databases. ELOVL5 encodes an elongase involved in the synthesis of polyunsaturated fatty acids of the ω3 and ω6 series. Arachidonic acid and docosahexaenoic acid, two final products of the enzyme, were reduced in the serum of affected individuals. Immunohistochemistry on control mice and human brain demonstrated high levels in Purkinje cells. In transfection experiments, subcellular localization of altered ELOVL5 showed a perinuclear distribution with a signal increase in the Golgi compartment, whereas the wild-type showed a widespread signal in the endoplasmic reticulum. SCA38 and SCA34 are examples of SCAs due to mutations in elongase-encoding genes, emphasizing the importance of fatty-acid metabolism in neurological diseases.
Neuropsychopharmacology | 2016
Dario Cupolillo; Eriola Hoxha; Alessio Faralli; Annarita De Luca; Ferdinando Rossi; Filippo Tempia; Daniela Carulli
Autism spectrum disorders (ASDs) are neurodevelopmental disorders characterized by impaired social interaction, isolated areas of interest, and insistence on sameness. Mutations in Phosphatase and tensin homolog missing on chromosome 10 (PTEN) have been reported in individuals with ASDs. Recent evidence highlights a crucial role of the cerebellum in the etiopathogenesis of ASDs. In the present study we analyzed the specific contribution of cerebellar Purkinje cell (PC) PTEN loss to these disorders. Using the Cre-loxP recombination system, we generated conditional knockout mice in which PTEN inactivation was induced specifically in PCs. We investigated PC morphology and physiology as well as sociability, repetitive behavior, motor learning, and cognitive inflexibility of adult PC PTEN-mutant mice. Loss of PTEN in PCs results in autistic-like traits, including impaired sociability, repetitive behavior and deficits in motor learning. Mutant PCs appear hypertrophic and show structural abnormalities in dendrites and axons, decreased excitability, disrupted parallel fiber and climbing fiber synapses and late-onset cell death. Our results unveil new roles of PTEN in PC function and provide the first evidence of a link between the loss of PTEN in PCs and the genesis of ASD-like traits.
Frontiers in Cellular Neuroscience | 2015
Filippo Tempia; Eriola Hoxha; Giulia Negro; Musaad A. Alshammari; Tahani K. Alshammari; Neli I. Panova-Elektronova; Fernanda Laezza
Genetically inherited mutations in the fibroblast growth factor 14 (FGF14) gene lead to spinocerebellar ataxia type 27 (SCA27), an autosomal dominant disorder characterized by heterogeneous motor and cognitive impairments. Consistently, genetic deletion of Fgf14 in Fgf14−/− mice recapitulates salient features of the SCA27 human disease. In vitro molecular studies in cultured neurons indicate that the FGF14F145S SCA27 allele acts as a dominant negative mutant suppressing the FGF14 wild type function and resulting in inhibition of voltage-gated Na+ and Ca2+ channels. To gain insights in the cerebellar deficits in the animal model of the human disease, we applied whole-cell voltage-clamp in the acute cerebellar slice preparation to examine the properties of parallel fibers (PF) to Purkinje neuron synapses in Fgf14−/− mice and wild type littermates. We found that the AMPA receptor-mediated excitatory postsynaptic currents evoked by PF stimulation (PF-EPSCs) were significantly reduced in Fgf14−/− animals, while short-term plasticity, measured as paired-pulse facilitation (PPF), was enhanced. Measuring Sr2+-induced release of quanta from stimulated synapses, we found that the size of the PF-EPSCs was unchanged, ruling out a postsynaptic deficit. This phenotype was corroborated by decreased expression of VGLUT1, a specific presynaptic marker at PF-Purkinje neuron synapses. We next examined the mGluR1 receptor-induced response (mGluR1-EPSC) that under normal conditions requires a gradual build-up of glutamate concentration in the synaptic cleft, and found no changes in these responses in Fgf14−/− mice. These results provide evidence of a critical role of FGF14 in maintaining presynaptic function at PF-Purkinje neuron synapses highlighting critical target mechanisms to recapitulate the complexity of the SCA27 disease.
PLOS ONE | 2012
Eriola Hoxha; Enrica Boda; Francesca Montarolo; Roberta Parolisi; Filippo Tempia
In Alzheimers disease (AD), the severity of cognitive symptoms is better correlated with the levels of soluble amyloid-beta (Aβ) rather than with the deposition of fibrillar Aβ in amyloid plaques. In APP/PS1 mice, a murine model of AD, at 8 months of age the cerebellum is devoid of fibrillar Aβ, but dosage of soluble Aβ1–42, the form which is more prone to aggregation, showed higher levels in this structure than in the forebrain. Aim of this study was to investigate the alterations of intrinsic membrane properties and of synaptic inputs in Purkinje cells (PCs) of the cerebellum, where only soluble Aβ is present. PCs were recorded by whole-cell patch-clamp in cerebellar slices from wild-type and APP/PS1 mice. In APP/PS1 PCs, evoked action potential discharge showed enhanced frequency adaptation and larger afterhyperpolarizations, indicating a reduction of the intrinsic membrane excitability. In the miniature GABAergic postsynaptic currents, the largest events were absent in APP/PS1 mice and the interspike intervals distribution was shifted to the left, but the mean amplitude and frequency were normal. The ryanodine-sensitive multivescicular release was not altered and the postsynaptic responsiveness to a GABAA agonist was intact. Climbing fiber postsynaptic currents were normal but their short-term plasticity was reduced in a time window of 100–800 ms. Parallel fiber postsynaptic currents and their short-term plasticity were normal. These results indicate that, in the cerebellar cortex, chronically elevated levels of soluble Aβ1–42 are associated with alterations of the intrinsic excitability of PCs and with alterations of the release of GABA from interneurons and of glutamate from climbing fibers, while the release of glutamate from parallel fibers and all postsynaptic mechanisms are preserved. Thus, soluble Aβ1–42 causes, in PCs, multiple functional alterations, including an impairment of intrinsic membrane properties and synapse-specific deficits, with differential consequences even in different subtypes of glutamatergic synapses.
Neuropharmacology | 2016
Pellegrino Lippiello; Eriola Hoxha; Luisa Speranza; Floriana Volpicelli; Angela Ferraro; Marcello Leopoldo; Enza Lacivita; Carla Perrone-Capano; Filippo Tempia; Maria Concetta Miniaci
The 5-HT7 receptor (5-HT7R) mediates important physiological effects of serotonin, such as memory and emotion, and is emerging as a therapeutic target for the treatment of cognitive disorders and depression. Although previous studies have revealed an expression of 5-HT7R in cerebellum, particularly at Purkinje cells, its functional role and signaling mechanisms have never been described. Using patch-clamp recordings in cerebellar slices of adult mice, we investigated the effects of a selective 5-HT7R agonist, LP-211, on the main plastic site of the cerebellar cortex, the parallel fiber-Purkinje cell synapse. Here we show that 5-HT7R activation induces long-term depression of parallel fiber-Purkinje cell synapse via a postsynaptic mechanism that involves the PKC-MAPK signaling pathway. Moreover, a 5-HT7R antagonist abolished the expression of PF-LTD, produced by pairing parallel fiber stimulation with Purkinje cell depolarization; whereas, application of a 5-HT7R agonist impaired LTP induced by 1 Hz parallel fiber stimulation. Our results indicate for the first time that 5-HT7R exerts a fine regulation of cerebellar bidirectional synaptic plasticity that might be involved in cognitive processes and neuropsychiatric disorders involving the cerebellum.
Frontiers in Synaptic Neuroscience | 2016
Eriola Hoxha; Filippo Tempia; Pellegrino Lippiello; Maria Concetta Miniaci
The parallel fiber-Purkinje cell (PF-PC) synapse represents the point of maximal signal divergence in the cerebellar cortex with an estimated number of about 60 billion synaptic contacts in the rat and 100,000 billions in humans. At the same time, the Purkinje cell dendritic tree is a site of remarkable convergence of more than 100,000 parallel fiber synapses. Parallel fiber activity generates fast postsynaptic currents via α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, and slower signals, mediated by mGlu1 receptors, resulting in Purkinje cell depolarization accompanied by sharp calcium elevation within dendritic regions. Long-term depression (LTD) and long-term potentiation (LTP) have been widely described for the PF-PC synapse and have been proposed as mechanisms for motor learning. The mechanisms of induction for LTP and LTD involve different signaling mechanisms within the presynaptic terminal and/or at the postsynaptic site, promoting enduring modification in the neurotransmitter release and change in responsiveness to the neurotransmitter. The PF-PC synapse is finely modulated by several neurotransmitters, including serotonin, noradrenaline and acetylcholine. The ability of these neuromodulators to gate LTP and LTD at the PF-PC synapse could, at least in part, explain their effect on cerebellar-dependent learning and memory paradigms. Overall, these findings have important implications for understanding the cerebellar involvement in a series of pathological conditions, ranging from ataxia to autism. For example, PF-PC synapse dysfunctions have been identified in several murine models of spino-cerebellar ataxia (SCA) types 1, 3, 5 and 27. In some cases, the defect is specific for the AMPA receptor signaling (SCA27), while in others the mGlu1 pathway is affected (SCA1, 3, 5). Interestingly, the PF-PC synapse has been shown to be hyper-functional in a mutant mouse model of autism spectrum disorder, with a selective deletion of Pten in Purkinje cells. However, the full range of methodological approaches, that allowed the discovery of the physiological principles of PF-PC synapse function, has not yet been completely exploited to investigate the pathophysiological mechanisms of diseases involving the cerebellum. We, therefore, propose to extend the spectrum of experimental investigations to tackle this problem.
Neuropharmacology | 2015
Pellegrino Lippiello; Eriola Hoxha; Floriana Volpicelli; Giuseppina Lo Duca; Filippo Tempia; Maria Concetta Miniaci
The signals arriving to Purkinje cells via parallel fibers are essential for all tasks in which the cerebellum is involved, including motor control, learning new motor skills and calibration of reflexes. Since learning also requires the activation of adrenergic receptors, we investigated the effects of adrenergic receptor agonists on the main plastic site of the cerebellar cortex, the parallel fiber-Purkinje cell synapse. Here we show that noradrenaline serves as an endogenous ligand for both α1-and α2-adrenergic receptors to produce synaptic depression between parallel fibers and Purkinje cells. On the contrary, PF-EPSCs were potentiated by the β-adrenergic receptor agonist isoproterenol. This short-term potentiation was postsynaptically expressed, required protein kinase A, and was mimicked by the β2-adrenoceptor agonist clenbuterol, suggesting that the β2-adrenoceptors mediate the noradrenergic facilitation of synaptic transmission between parallel fibers and Purkinje cells. Moreover, β-adrenoceptor activation lowered the threshold for cerebellar long-term potentiation induced by 1 Hz parallel fiber stimulation. The presence of both α and β adrenergic receptors on Purkinje cells suggests the existence of bidirectional mechanisms of regulation allowing the noradrenergic afferents to refine the signals arriving to Purkinje cells at particular arousal states or during learning.
PLOS ONE | 2013
Francesca Montarolo; Roberta Parolisi; Eriola Hoxha; Enrica Boda; Filippo Tempia
Enriched environment exposure improves several aspects of cognitive performance in Alzheimer’s disease patients and in animal models and, although the role of amyloid plaques is questionable, several studies also assessed their response to enriched environment, with contrasting results. Here we report that rearing APPSwe/PS1L166P mice in an enriched environment since birth rescued the spatial memory impairment otherwise present at 6 months of age. At the same time, the exposure to the enriched environment caused a transient acceleration of plaque formation, while there was no effect on intracellular staining with the 6E10 antibody, which recognizes β-amyloid, full length amyloid precursor protein and its C-terminal fragments. The anticipation of plaque formation required exposure during early development, suggesting an action within critical periods for circuits formation. On the other hand, chronic neuronal activity suppression by tetrodotoxin decreased the number of plaques without affecting intracellular amyloid. These results indicate that enriched environment exposure since early life has a protective effect on cognitive deterioration although transiently accelerates amyloid deposition. In addition, the effects of the enriched environment might be due to increased neuronal activity, because plaques were reduced by suppression of electrical signaling by tetrodotoxin.
BMC Neuroscience | 2010
Tiziana Sacco; Enrica Boda; Eriola Hoxha; Riccardo Pizzo; Claudia Cagnoli; Filippo Tempia
BackgroundThe m-AAA (A TPases A ssociated with a variety of cellular A ctivities) is an evolutionary conserved metalloprotease complex located in the internal mitochondrial membrane. In the mouse, it is a hetero-oligomer variably formed by the Spg7, Afg3l1, and Afg3l2 encoded proteins, or a homo-oligomer formed by either Afg3l1 or Afg3l2. In humans, AFG3L2 and SPG7 genes are conserved, whereas AFG3L1 became a pseudogene. Both AFG3L2 and SPG7 are involved in a neurodegenerative disease, namely the autosomal dominant spinocerebellar ataxia SCA28 and a recessive form of spastic paraplegia, respectively.ResultsUsing quantitative RT-PCR, we measured the expression levels of Spg7, Afg3l1, and Afg3l2 in the mouse brain. In all regions Afg3l2 is the most abundant transcript, followed by Spg7, and Afg3l1, with a ratio of approximately 5:3:1 in whole-brain mRNA. Using in-situ hybridization, we showed that Spg7, Afg3l1 and Afg3l2 have a similar cellular pattern of expression, with high levels in mitral cells, Purkinje cells, deep cerebellar nuclei cells, neocortical and hippocampal pyramidal neurons, and brainstem motor neurons. However, in some neuronal types, differences in the level of expression of these genes were present, suggesting distinct degrees of contribution of their proteins.ConclusionsNeurons involved in SCA28 and hereditary spastic paraplegia display high levels of expression, but similar or even higher expression is also present in other types of neurons, not involved in these diseases, suggesting that the selective cell sensitivity should be attributed to other, still unknown, mechanisms.