Erkin Kuru
Indiana University Bloomington
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Erkin Kuru.
Angewandte Chemie | 2012
Erkin Kuru; H. Velocity Hughes; Pamela J. B. Brown; Edward Hall; Srinivas Tekkam; Felipe Cava; Miguel A. de Pedro; Yves V. Brun; Michael S. VanNieuwenhze
Tracking a bugs life: Peptidoglycan (PG) of diverse bacteria is labeled by exploiting the tolerance of cells for incorporating different non-natural D-amino acids. These nontoxic D-amino acids preferably label the sites of active PG synthesis, thereby enabling fine spatiotemporal tracking of cell-wall dynamics in phylogenetically and morphologically diverse bacteria. HCC = 7-hydroxycoumarin, NBD = 7-nitrobenzofurazan, TAMRA = carboxytetramethylrhodamine.
Nature | 2014
George Liechti; Erkin Kuru; Edward Hall; A. Kalinda; Yves V. Brun; Michael S. VanNieuwenhze; Anthony T. Maurelli
Peptidoglycan (PG), an essential structure in the cell walls of the vast majority of bacteria, is critical for division and maintaining cell shape and hydrostatic pressure. Bacteria comprising the Chlamydiales were thought to be one of the few exceptions. Chlamydia harbour genes for PG biosynthesis and exhibit susceptibility to ‘anti-PG’ antibiotics, yet attempts to detect PG in any chlamydial species have proven unsuccessful (the ‘chlamydial anomaly’). We used a novel approach to metabolically label chlamydial PG using d-amino acid dipeptide probes and click chemistry. Replicating Chlamydia trachomatis were labelled with these probes throughout their biphasic developmental life cycle, and the results of differential probe incorporation experiments conducted in the presence of ampicillin are consistent with the presence of chlamydial PG-modifying enzymes. These findings culminate 50 years of speculation and debate concerning the chlamydial anomaly and are the strongest evidence so far that chlamydial species possess functional PG.
Science | 2017
Alexandre W. Bisson-Filho; Yen-Pang Hsu; Georgia R. Squyres; Erkin Kuru; Fabai Wu; Calum Jukes; Yingjie Sun; Cees Dekker; Seamus Holden; Michael S. VanNieuwenhze; Yves V. Brun; Ethan C. Garner
Coordinating cell wall synthesis and cell division Most bacteria are protected by peptidoglycan cell walls, which must be remodeled to split the cell. Cell division requires the tubulin homolog FtsZ, a highly conserved cytoskeletal polymer that specifies the future site of division. Bisson-Filho et al. and Yang et al. found that the dynamic treadmilling of FtsZ filaments controls both the location and activity of the associated cell wall synthetic enzymes. This creates discrete sites of cell wall synthesis that circle around the division plane to divide the cell. Science, this issue p. 739, p. 744 Bacterial cytokinesis is controlled by the circumferential treadmilling of FtsZ and FtsA filaments that drives the insertion of new cell wall. The mechanism by which bacteria divide is not well understood. Cell division is mediated by filaments of FtsZ and FtsA (FtsAZ) that recruit septal peptidoglycan-synthesizing enzymes to the division site. To understand how these components coordinate to divide cells, we visualized their movements relative to the dynamics of cell wall synthesis during cytokinesis. We found that the division septum was built at discrete sites that moved around the division plane. FtsAZ filaments treadmilled circumferentially around the division ring and drove the motions of the peptidoglycan-synthesizing enzymes. The FtsZ treadmilling rate controlled both the rate of peptidoglycan synthesis and cell division. Thus, FtsZ treadmilling guides the progressive insertion of new cell wall by building increasingly smaller concentric rings of peptidoglycan to divide the cell.
Nature | 2014
Aurore Fleurie; Christian Lesterlin; Sylvie Manuse; Chao Zhao; Caroline Cluzel; Jean-Pierre Lavergne; Mirita Franz-Wachtel; Boris Macek; Christophe Combet; Erkin Kuru; Michael S. VanNieuwenhze; Yves V. Brun; David J. Sherratt; Christophe Grangeasse
In every living organism, cell division requires accurate identification of the division site and placement of the division machinery. In bacteria, this process is traditionally considered to begin with the polymerization of the highly conserved tubulin-like protein FtsZ into a ring that locates precisely at mid-cell. Over the past decades, several systems have been reported to regulate the spatiotemporal assembly and placement of the FtsZ ring. However, the human pathogen Streptococcus pneumoniae, in common with many other organisms, is devoid of these canonical systems and the mechanisms of positioning the division machinery remain unknown. Here we characterize a novel factor that locates at the division site before FtsZ and guides septum positioning in pneumococcus. Mid-cell-anchored protein Z (MapZ) forms ring structures at the cell equator and moves apart as the cell elongates, therefore behaving as a permanent beacon of division sites. MapZ then positions the FtsZ ring through direct protein–protein interactions. MapZ-mediated control differs from previously described systems mostly on the basis of negative regulation of FtsZ assembly. Furthermore, MapZ is an endogenous target of the Ser/Thr kinase StkP, which was recently shown to have a central role in cytokinesis and morphogenesis of S. pneumoniae. We show that both phosphorylated and non-phosphorylated forms of MapZ are required for proper Z-ring formation and dynamics. Altogether, this work uncovers a new mechanism for bacterial cell division that is regulated by phosphorylation and illustrates that nature has evolved a diversity of cell division mechanisms adapted to the different bacterial clades.
PLOS Genetics | 2014
Aurore Fleurie; Sylvie Manuse; Chao Zhao; Nathalie Campo; Caroline Cluzel; Jean-Pierre Lavergne; Céline Freton; Christophe Combet; Sébastien Guiral; Boumediene Soufi; Boris Macek; Erkin Kuru; Michael S. VanNieuwenhze; Yves V. Brun; Anne-Marie Di Guilmi; Jean-Pierre Claverys; Anne Galinier; Christophe Grangeasse
Despite years of intensive research, much remains to be discovered to understand the regulatory networks coordinating bacterial cell growth and division. The mechanisms by which Streptococcus pneumoniae achieves its characteristic ellipsoid-cell shape remain largely unknown. In this study, we analyzed the interplay of the cell division paralogs DivIVA and GpsB with the ser/thr kinase StkP. We observed that the deletion of divIVA hindered cell elongation and resulted in cell shortening and rounding. By contrast, the absence of GpsB resulted in hampered cell division and triggered cell elongation. Remarkably, ΔgpsB elongated cells exhibited a helical FtsZ pattern instead of a Z-ring, accompanied by helical patterns for DivIVA and peptidoglycan synthesis. Strikingly, divIVA deletion suppressed the elongated phenotype of ΔgpsB cells. These data suggest that DivIVA promotes cell elongation and that GpsB counteracts it. Analysis of protein-protein interactions revealed that GpsB and DivIVA do not interact with FtsZ but with the cell division protein EzrA, which itself interacts with FtsZ. In addition, GpsB interacts directly with DivIVA. These results are consistent with DivIVA and GpsB acting as a molecular switch to orchestrate peripheral and septal PG synthesis and connecting them with the Z-ring via EzrA. The cellular co-localization of the transpeptidases PBP2x and PBP2b as well as the lipid-flippases FtsW and RodA in ΔgpsB cells further suggest the existence of a single large PG assembly complex. Finally, we show that GpsB is required for septal localization and kinase activity of StkP, and therefore for StkP-dependent phosphorylation of DivIVA. Altogether, we propose that the StkP/DivIVA/GpsB triad finely tunes the two modes of peptidoglycan (peripheral and septal) synthesis responsible for the pneumococcal ellipsoid cell shape.
Nature Communications | 2013
Martin Pilhofer; Karin Aistleitner; Jacob Biboy; Joe Gray; Erkin Kuru; Edward Hall; Yves V. Brun; Michael S. VanNieuwenhze; Waldemar Vollmer; Matthias Horn; Grant J. Jensen
Chlamydiae are important pathogens and symbionts, with unique cell biology features. They lack the cell-division protein FtsZ, which functions in maintaining cell shape and orchestrating cell division in almost all other bacteria. In addition, the existence of peptidoglycan (PG) in chlamydial cell envelopes has been highly controversial. Using electron cryotomography, mass spectrometry and fluorescent labeling dyes, here we show that some environmental chlamydiae have cell-wall sacculi consisting of an unusual PG type. Treatment with fosfomycin (a PG synthesis inhibitor) leads to lower infection rates and aberrant cell shapes, suggesting that PG synthesis is crucial for the chlamydial life cycle. Our findings demonstrate for the first time the presence of PG in a member of the Chlamydiae. They also present a unique example of a bacterium with a PG sacculus but without FtsZ, challenging the current hypothesis that it is the absence of a cell wall that renders FtsZ non-essential.
Nature Communications | 2015
Muriel C. F. van Teeseling; Rob J. Mesman; Erkin Kuru; Akbar Espaillat; Felipe Cava; Yves V. Brun; Michael S. VanNieuwenhze; Boran Kartal; Laura van Niftrik
Planctomycetes are intriguing microorganisms that apparently lack peptidoglycan, a structure that controls the shape and integrity of almost all bacterial cells. Therefore, the planctomycetal cell envelope is considered exceptional and their cell plan uniquely compartmentalized. Anaerobic ammonium-oxidizing (anammox) Planctomycetes play a key role in the global nitrogen cycle by releasing fixed nitrogen back to the atmosphere as N2. Here using a complementary array of state-of-the-art techniques including continuous culturing, cryo-transmission electron microscopy, peptidoglycan-specific probes and muropeptide analysis, we show that the anammox bacterium Kuenenia stuttgartiensis contains peptidoglycan. On the basis of the thickness, composition and location of peptidoglycan in K. stuttgartiensis, we propose to redefine Planctomycetes as Gram-negative bacteria. Our results demonstrate that Planctomycetes are not an exception to the universal presence of peptidoglycan in bacteria.
Molecular Microbiology | 2013
Elitza I. Tocheva; Javier Lopez-Garrido; H. Velocity Hughes; Jennifer Fredlund; Erkin Kuru; Michael S. VanNieuwenhze; Yves V. Brun; Kit Pogliano; Grant J. Jensen
While vegetative Bacillus subtilis cells and mature spores are both surrounded by a thick layer of peptidoglycan (PG, a polymer of glycan strands cross‐linked by peptide bridges), it has remained unclear whether PG surrounds prespores during engulfment. To clarify this issue, we generated a slender ΔponA mutant that enabled high‐resolution electron cryotomographic imaging. Three‐dimensional reconstructions of whole cells in near‐native states revealed a thin PG‐like layer extending from the lateral cell wall around the prespore throughout engulfment. Cryotomography of purified sacculi and fluorescent labelling of PG in live cells confirmed that PG surrounds the prespore. The presence of PG throughout engulfment suggests new roles for PG in sporulation, including a new model for how PG synthesis might drive engulfment, and obviates the need to synthesize a PG layer de novo during cortex formation. In addition, it reveals that B. subtilis can synthesize thin, Gram‐negative‐like PG layers as well as its thick, archetypal Gram‐positive cell wall. The continuous transformations from thick to thin and back to thick during sporulation suggest that both forms of PG have the same basic architecture (circumferential). Endopeptidase activity may be the main switch that governs whether a thin or a thick PG layer is assembled.
Nature Communications | 2015
João M. Monteiro; Pedro B. Fernandes; Filipa Vaz; Ana R. Pereira; Andreia C. Tavares; Maria Teresa Ferreira; Pedro M. Pereira; Helena Veiga; Erkin Kuru; Michael S. VanNieuwenhze; Yves V. Brun; Sergio R. Filipe; Mariana G. Pinho
Staphylococcus aureus is an aggressive pathogen and a model organism to study cell division in sequential orthogonal planes in spherical bacteria. However, the small size of staphylococcal cells has impaired analysis of changes in morphology during the cell cycle. Here we use super-resolution microscopy and determine that S. aureus cells are not spherical throughout the cell cycle, but elongate during specific time windows, through peptidoglycan synthesis and remodelling. Both peptidoglycan hydrolysis and turgor pressure are required during division for reshaping the flat division septum into a curved surface. In this process, the septum generates less than one hemisphere of each daughter cell, a trait we show is common to other cocci. Therefore, cell surface scars of previous divisions do not divide the cells in quadrants, generating asymmetry in the daughter cells. Our results introduce a need to reassess the models for division plane selection in cocci.
Molecular Microbiology | 2014
Ho Ching T. Tsui; Michael J. Boersma; Stephen A. Vella; Ozden Kocaoglu; Erkin Kuru; Julia K. Peceny; Erin E. Carlson; Michael S. VanNieuwenhze; Yves V. Brun; Sidney L. Shaw; Malcolm E. Winkler
The relative localization patterns of class B penicillin‐binding proteins Pbp2x and Pbp2b were used as positional indicators of septal and peripheral (side‐wall‐like) peptidoglycan (PG) synthesis, respectively, in the mid‐cell regions of Streptococcus pneumoniae cells at different stages of division. We confirm that Pbp2x and Pbp2b are essential in the strain D39 genetic background, which differs from that of laboratory strains. We show that Pbp2b, like Pbp2x and class A Pbp1a, follows a different localization pattern than FtsZ and remains at division septa after FtsZ reappears at the equators of daughter cells. Pulse‐experiments with fluorescent D‐amino acids (FDAAs) were performed in wild‐type cells and in cells in which Pbp2x activity was preferentially inhibited by methicillin or Pbp2x amount was depleted. These experiments show that Pbp2x activity separates from that of other PBPs to the centres of constricting septa in mid‐to‐late divisional cells resolved by high‐resolution 3D‐SIM microscopy. Dual‐protein and protein‐fluorescent vancomycin 2D and 3D‐SIM immunofluorescence microscopy (IFM) of cells at different division stages corroborate that Pbp2x separates to the centres of septa surrounded by an adjacent constricting ring containing Pbp2b, Pbp1a and regulators, StkP and MreC. The separate localization of Pbp2x suggests distinctive roles in completing septal PG synthesis and remodelling.