Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erlend A. Nagelhus is active.

Publication


Featured researches published by Erlend A. Nagelhus.


Science Translational Medicine | 2012

A Paravascular Pathway Facilitates CSF Flow Through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid β

Jeffrey J. Iliff; Minghuan Wang; Yonghong Liao; Benjamin A. Plogg; Weiguo Peng; Georg Andreas Gundersen; Helene Benveniste; G. Edward Vates; Rashid Deane; Steven A. Goldman; Erlend A. Nagelhus

Cerebrospinal fluid flows through channels around brain blood vessels that are bounded by astrocytic endfeet, mediated by water transport through aquaporin-4. A New Footing for Waste Clearance in the Brain Where are the lymph vessels of the brain? The lymphatic system’s complex network of vessels extends throughout most of the body, transporting excess fluid and waste products from the interstitial spaces between cells to the blood. Such vessels are notably absent from the brain, however, leading to long-standing questions about how interstitial fluid in this organ is cleared of waste. Now, Iliff et al. describe an anatomically distinct clearing system in the brain that serves a lymphatic-like function. The researchers first investigated the fate of tracer molecules introduced into the cerebrospinal fluid (CSF) in mice. Produced in ventricular cavities deep within the brain, the CSF fills the subarachnoid space—a gap between two of the membranes that encase the brain and spinal cord. Whereas tracers infused into the ventricle remained near that site, those injected into the subarachnoid space rapidly entered the brain itself. By visualizing fluorescent tracers through a cranial window in live mice, the authors found that CSF enters the brain in specific channels that are defined by features of small blood vessels in the brain. Such vessels are almost entirely ensheathed by astrocytic endfeet (terminal enlargements of long processes that project from astrocytes). The CSF tracers readily flow inward to the brain matter in a compartment between the outside of vessels—in this case small arteries entering the brain—and the astrocytic endfeet. At later time points, the tracer exits the brain in similar channels surrounding veins, having apparently circulated through the brain interstitium. Such CSF flux—and the clearance of tracers injected into the brain itself—were markedly reduced in mice lacking aquaporin-4, a water channel localized to astrocytic endfeet, indicating that these channels mediate this flux. These findings may have relevance for understanding or treating neurodegenerative diseases that involve the mis-accumulation of soluble proteins, such as amyloid β in Alzheimer’s disease. Indeed, Iliff et al. found that normal clearance of amyloid β (previously injected into the brain) requires aquaporin-4. Because it lacks a lymphatic circulation, the brain must clear extracellular proteins by an alternative mechanism. The cerebrospinal fluid (CSF) functions as a sink for brain extracellular solutes, but it is not clear how solutes from the brain interstitium move from the parenchyma to the CSF. We demonstrate that a substantial portion of subarachnoid CSF cycles through the brain interstitial space. On the basis of in vivo two-photon imaging of small fluorescent tracers, we showed that CSF enters the parenchyma along paravascular spaces that surround penetrating arteries and that brain interstitial fluid is cleared along paravenous drainage pathways. Animals lacking the water channel aquaporin-4 (AQP4) in astrocytes exhibit slowed CSF influx through this system and a ~70% reduction in interstitial solute clearance, suggesting that the bulk fluid flow between these anatomical influx and efflux routes is supported by astrocytic water transport. Fluorescent-tagged amyloid β, a peptide thought to be pathogenic in Alzheimer’s disease, was transported along this route, and deletion of the Aqp4 gene suppressed the clearance of soluble amyloid β, suggesting that this pathway may remove amyloid β from the central nervous system. Clearance through paravenous flow may also regulate extracellular levels of proteins involved with neurodegenerative conditions, its impairment perhaps contributing to the mis-accumulation of soluble proteins.


Glia | 1999

Immunogold evidence suggests that coupling of K+ siphoning and water transport in rat retinal Müller cells is mediated by a coenrichment of Kir4.1 and AQP4 in specific membrane domains.

Erlend A. Nagelhus; Yoshiyuki Horio; Atsushi Inanobe; Akikazu Fujita; Finn‐m. Haug; Søren Nielsen; Yoshihisa Kurachi; Ole Petter Ottersen

Postembedding immunogold labeling was used to examine the subcellular distribution of the inwardly rectifying K+ channel Kir4.1 in rat retinal Müller cells and to compare this with the distribution of the water channel aquaporin‐4 (AQP4). The quantitative analysis suggested that both molecules are enriched in those plasma membrane domains that face the vitreous body and blood vessels. In addition, Kir4.1, but not AQP4, was concentrated in the basal ∼300–400 nm of the Müller cell microvilli. These data indicate that AQP4 may mediate the water flux known to be associated with K+ siphoning in the retina. By its highly differentiated distribution of AQP4, the Müller cell may be able to direct the water flux to select extracellular compartments while protecting others (the subretinal space) from inappropriate volume changes. The identification of specialized membrane domains with high Kir4.1 expression provides a morphological correlate for the heterogeneous K+ conductance along the Müller cell surface. GLIA 26:47–54, 1999.


Neuroscience | 2004

Aquaporin-4 in the central nervous system: Cellular and subcellular distribution and coexpression with KIR4.1

Erlend A. Nagelhus; Thomas Misje Mathiisen; O.P. Ottersen

Aquaporin-4 (AQP4) is the predominant water channel in the neuropil of the central nervous system. It is expressed primarily in astrocytes, but also occurs in ependymocytes and endothelial cells. A striking feature of AQP4 expression is its polarized distribution in brain astrocytes and retinal Muller cells. Thus, immunogold analyses have revealed an enrichment of AQP4 in endfeet membranes in contact with brain microvessels or subarachnoidal space and a low but significant concentration in non-endfeet membranes, including those astrocyte membranes that ensheath glutamate synapses. The subcellular compartmentation of AQP4 mimics that of the potassium channel Kir4.1, which is implicated in spatial buffering of K(+). We propose that AQP4 works in concert with Kir4.1 and the electrogenic bicarbonate transporter NBC and that water flux through AQP4 contributes to the activity dependent volume changes of the extracellular space. Such volume changes are important as they affect the extracellular solute concentrations and electrical fields, and hence neuronal excitability. We conclude that AQP4-mediated water flux represents an integral element of brain volume and ion homeostasis.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Delayed K+ clearance associated with aquaporin-4 mislocalization: Phenotypic defects in brains of α-syntrophin-null mice

Mahmood Amiry-Moghaddam; Anne Williamson; Maria Palomba; Tore Eid; Nihal C. de Lanerolle; Erlend A. Nagelhus; Marvin E. Adams; Stanley C. Froehner; Peter Agre; Ole Petter Ottersen

Recovery from neuronal activation requires rapid clearance of potassium ions (K+) and restoration of osmotic equilibrium. The predominant water channel protein in brain, aquaporin-4 (AQP4), is concentrated in the astrocyte end-feet membranes adjacent to blood vessels in neocortex and cerebellum by association with α-syntrophin protein. Although AQP4 has been implicated in the pathogenesis of brain edema, its functions in normal brain physiology are uncertain. In this study, we used immunogold electron microscopy to compare hippocampus of WT and α-syntrophin-null mice (α-Syn-/-). We found that <10% of AQP4 immunogold labeling is retained in the perivascular astrocyte end-feet membranes of the α-Syn-/- mice, whereas labeling of the inwardly rectifying K+ channel, Kir4.1, is largely unchanged. Activity-dependent changes in K+ clearance were studied in hippocampal slices to test whether AQP4 and K+ channels work in concert to achieve isosmotic clearance of K+ after neuronal activation. Microelectrode recordings of extracellular K+ ([K+]o) from the target zones of Schaffer collaterals and perforant path were obtained after 5-, 10-, and 20-Hz orthodromic stimulations. K+ clearance was prolonged up to 2-fold in α-Syn-/- mice compared with WT mice. Furthermore, the intensity of hyperthermia-induced epileptic seizures was increased in approximately half of the α-Syn-/-mice. These studies lead us to propose that water flux through perivascular AQP4 is needed to sustain efficient removal of K+ after neuronal activation.


American Journal of Physiology-cell Physiology | 1998

Aquaporins in complex tissues: distribution of aquaporins 1–5 in human and rat eye

Steffen Hamann; Thomas Zeuthen; Morten la Cour; Erlend A. Nagelhus; Ole Petter Ottersen; Peter Agre; Søren Nielsen

Multiple physiological fluid movements are involved in vision. Here we define the cellular and subcellular sites of aquaporin (AQP) water transport proteins in human and rat eyes by immunoblotting, high-resolution immunocytochemistry, and immunoelectron microscopy. AQP3 is abundant in bulbar conjunctival epithelium and glands but is only weakly present in corneal epithelium. In contrast, AQP5 is prominent in corneal epithelium and apical membranes of lacrimal acini. AQP1 is heavily expressed in scleral fibroblasts, corneal endothelium and keratocytes, and endothelium covering the trabecular meshwork and Schlemms canal. Although AQP1 is plentiful in ciliary nonpigmented epithelium, it is not present in ciliary pigmented epithelium. Posterior and anterior epithelium of the iris and anterior lens epithelium also contain significant amounts of AQP1, but AQP0 (major intrinsic protein of the lens) is expressed in lens fiber cells. Retinal Müller cells and astrocytes exhibit notable concentrations of AQP4, whereas neurons and retinal pigment epithelium do not display aquaporin immunolabeling. These studies demonstrate selective expression of AQP1, AQP3, AQP4, and AQP5 in distinct ocular epithelia, predicting specific roles for each in the complex network through which water movements occur in the eye.Multiple physiological fluid movements are involved in vision. Here we define the cellular and subcellular sites of aquaporin (AQP) water transport proteins in human and rat eyes by immunoblotting, high-resolution immunocytochemistry, and immunoelectron microscopy. AQP3 is abundant in bulbar conjunctival epithelium and glands but is only weakly present in corneal epithelium. In contrast, AQP5 is prominent in corneal epithelium and apical membranes of lacrimal acini. AQP1 is heavily expressed in scleral fibroblasts, corneal endothelium and keratocytes, and endothelium covering the trabecular meshwork and Schlemms canal. Although AQP1 is plentiful in ciliary nonpigmented epithelium, it is not present in ciliary pigmented epithelium. Posterior and anterior epithelium of the iris and anterior lens epithelium also contain significant amounts of AQP1, but AQP0 (major intrinsic protein of the lens) is expressed in lens fiber cells. Retinal Müller cells and astrocytes exhibit notable concentrations of AQP4, whereas neurons and retinal pigment epithelium do not display aquaporin immunolabeling. These studies demonstrate selective expression of AQP1, AQP3, AQP4, and AQP5 in distinct ocular epithelia, predicting specific roles for each in the complex network through which water movements occur in the eye.


Physiological Reviews | 2013

Physiological Roles of Aquaporin-4 in Brain

Erlend A. Nagelhus; Ole Petter Ottersen

Aquaporin-4 (AQP4) is one of the most abundant molecules in the brain and is particularly prevalent in astrocytic membranes at the blood-brain and brain-liquor interfaces. While AQP4 has been implicated in a number of pathophysiological processes, its role in brain physiology has remained elusive. Only recently has evidence accumulated to suggest that AQP4 is involved in such diverse functions as regulation of extracellular space volume, potassium buffering, cerebrospinal fluid circulation, interstitial fluid resorption, waste clearance, neuroinflammation, osmosensation, cell migration, and Ca(2+) signaling. AQP4 is also required for normal function of the retina, inner ear, and olfactory system. A review will be provided of the physiological roles of AQP4 in brain and of the growing list of data that emphasize the polarized nature of astrocytes.


European Journal of Neuroscience | 1999

Ontogeny of water transport in rat brain: postnatal expression of the aquaporin-4 water channel.

H Wen; Erlend A. Nagelhus; Mahmood Amiry-Moghaddam; Peter Agre; O.P. Ottersen; Søren Nielsen

Brain water transport is poorly understood at the molecular level, and marked changes occur during brain development. As the aquaporin‐4 (AQP4) water channel protein is abundant in brain, the expression levels and subcellular distribution of this protein were examined during postnatal development. This study focused on the cerebellum, which showed the same pattern of AQP4 development as the rest of the brain. Semiquantitative immunoblotting revealed very low levels of AQP4 in the first postnatal week. A pronounced increase was noted in the second week, from 2% of adult level at postnatal day 7 (PN7) to 25% at PN14. At PN1 and PN3 immunofluorescence microscopy revealed weak labelling, mainly in radial processes (Bergmann fibres) and at the pial surface. Between PN7 and PN14 the labelling underneath the pia showed a strong increase, and immunoreactivity also appeared around blood vessels throughout the cerebellum. High‐resolution immunogold electron microscopy revealed that the subpial and perivascular labelling was restricted to glial end feet, notably to those plasma membrane domains that were apposed to the basal laminae. At no stage was there any evidence of neuronal AQP4 labelling, and AQP1, −2, −3 and −5 proteins were not detected in the neuropil. Riboprobes to AQP4 mRNA produced a particularly strong in situ hybridization signal in glial cells between PN7 and PN14, corresponding to the stage of the most rapid increase of AQP4 protein. The time course and pattern of AQP4 expression suggests that this aquaporin plays an important role in brain water and K+ homeostasis from the second week of development.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Critical role of aquaporin-4 (AQP4) in astrocytic Ca2+ signaling events elicited by cerebral edema

Alexander S. Thrane; P. M. Rappold; Takumi Fujita; A. Torres; Lane K. Bekar; Takahiro Takano; Weiguo Peng; Fushun Wang; V. Rangroo Thrane; Rune Enger; Nadia Nabil Haj-Yasein; Øivind Skare; Torgeir Holen; Arne Klungland; Ole Petter Ottersen; M. Nedergaard; Erlend A. Nagelhus

Aquaporin-4 (AQP4) is a primary influx route for water during brain edema formation. Here, we provide evidence that brain swelling triggers Ca2+ signaling in astrocytes and that deletion of the Aqp4 gene markedly interferes with these events. Using in vivo two-photon imaging, we show that hypoosmotic stress (20% reduction in osmolarity) initiates astrocytic Ca2+ spikes and that deletion of Aqp4 reduces these signals. The Ca2+ signals are partly dependent on activation of P2 purinergic receptors, which was judged from the effects of appropriate antagonists applied to cortical slices. Supporting the involvement of purinergic signaling, osmotic stress was found to induce ATP release from cultured astrocytes in an AQP4-dependent manner. Our results suggest that AQP4 not only serves as an influx route for water but also is critical for initiating downstream signaling events that may affect and potentially exacerbate the pathological outcome in clinical conditions associated with brain edema.


Proceedings of the National Academy of Sciences of the United States of America | 2012

General anesthesia selectively disrupts astrocyte calcium signaling in the awake mouse cortex

Alexander S. Thrane; Vinita Rangroo Thrane; Douglas Zeppenfeld; Nanhong Lou; Qiwu Xu; Erlend A. Nagelhus

Calcium signaling represents the principle pathway by which astrocytes respond to neuronal activity. General anesthetics are routinely used in clinical practice to induce a sleep-like state, allowing otherwise painful procedures to be performed. Anesthetic drugs are thought to mainly target neurons in the brain and act by suppressing synaptic activity. However, the direct effect of general anesthesia on astrocyte signaling in awake animals has not previously been addressed. This is a critical issue, because calcium signaling may represent an essential mechanism through which astrocytes can modulate synaptic activity. In our study, we performed calcium imaging in awake head-restrained mice and found that three commonly used anesthetic combinations (ketamine/xylazine, isoflurane, and urethane) markedly suppressed calcium transients in neocortical astrocytes. Additionally, all three anesthetics masked potentially important features of the astrocyte calcium signals, such as synchronized widespread transients that appeared to be associated with arousal in awake animals. Notably, anesthesia affected calcium transients in both processes and soma and depressed spontaneous signals, as well as calcium responses, evoked by whisker stimulation or agonist application. We show that these calcium transients are inositol 1,4,5-triphosphate type 2 receptor (IP3R2)-dependent but resistant to a local blockade of glutamatergic or purinergic signaling. Finally, we found that doses of anesthesia insufficient to affect neuronal responses to whisker stimulation selectively suppressed astrocyte calcium signals. Taken together, these data suggest that general anesthesia may suppress astrocyte calcium signals independently of neuronal activity. We propose that these glial effects may constitute a nonneuronal mechanism for sedative action of anesthetic drugs.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Glial-conditional deletion of aquaporin-4 (Aqp4) reduces blood–brain water uptake and confers barrier function on perivascular astrocyte endfeet

Nadia Nabil Haj-Yasein; Gry Fluge Vindedal; Martine Eilert-Olsen; Georg Andreas Gundersen; Øivind Skare; Petter Laake; Arne Klungland; Anna E. Thoren; John Michael Burkhardt; Ole Petter Ottersen; Erlend A. Nagelhus

Tissue- and cell-specific deletion of the Aqp4 gene is required to differentiate between the numerous pools of aquaporin-4 (AQP4) water channels. A glial-conditional Aqp4 knockout mouse line was generated to resolve whether astroglial AQP4 controls water exchange across the blood–brain interface. The conditional knockout was driven by the glial fibrillary acidic protein promoter. Brains from conditional Aqp4 knockouts were devoid of AQP4 as assessed by Western blots, ruling out the presence of a significant endothelial pool of AQP4. In agreement, immunofluorescence analysis of cryostate sections and quantitative immunogold analysis of ultrathin sections revealed no AQP4 signals in capillary endothelia. Compared with litter controls, glial-conditional Aqp4 knockout mice showed a 31% reduction in brain water uptake after systemic hypoosmotic stress and a delayed postnatal resorption of brain water. Deletion of astroglial Aqp4 did not affect the barrier function to macromolecules. Our data suggest that the blood–brain barrier (BBB) is more complex than anticipated. Notably, under certain conditions, the astrocyte covering of brain microvessels is rate limiting to water movement.

Collaboration


Dive into the Erlend A. Nagelhus's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kjell Heuser

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Agre

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge