Erlend Fagertun Hofstad
SINTEF
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Erlend Fagertun Hofstad.
Journal of bronchology & interventional pulmonology | 2014
Pall Jens Reynisson; Håkon Olav Leira; Toril A. Nagelhus Hernes; Erlend Fagertun Hofstad; Marta Scali; Hanne Sorger; Tore Amundsen; Frank Lindseth; Thomas Langø
Background:Navigated bronchoscopy uses virtual 3-dimensional lung model visualizations created from preoperative computed tomography images often in synchronization with the video bronchoscope to guide a tool to peripheral lesions. Navigated bronchoscopy has developed fast since the introduction of virtual bronchoscopy with integrated electromagnetic sensors in the late 1990s. The purposes of the review are to give an overview and update of the technological components of navigated bronchoscopy, an assessment of its clinical usefulness, and a brief assessment of the commercial platforms for navigated bronchoscopy. Methods:We performed a literature search with relevant keywords to navigation and bronchoscopy and iterated on the reference lists of relevant papers, with emphasis on the last 5 years. Results:The paper presents an overview of the components necessary for performing navigated bronchoscopy, assessment of the diagnostic accuracy of different approaches, and an analysis of the commercial systems. We were able to identify 4 commercial platforms and 9 research and development groups with considerable activity in the field. Finally, on the basis of our findings and our own experience, we provide a discussion on navigated bronchoscopy with focus on the next steps of development. Conclusions:The literature review showed that the peripheral diagnostic accuracy has improved using navigated bronchoscopy compared with traditional bronchoscopy. We believe that there is room for improvement in the diagnostic success rate by further refinement of methods, approaches, and tools used in navigated bronchoscopy.
Minimally Invasive Therapy & Allied Technologies | 2012
Mariken Zijlmans; Thomas Langø; Erlend Fagertun Hofstad; Christiaan F. P. Van Swol; Anna Rethy
Abstract Background: Precise laparoscopic liver resection requires accurate planning and visualization of important anatomy such as vessels and tumors. Combining laparoscopic ultrasound with navigation technology could provide this. Preoperative images are valuable for planning and overview of the procedure, while intraoperative images provide an updated view of the surgical field. Purpose: To validate the accuracy of navigation technology based on preoperative images, we need to understand how much the liver shifts and deforms due to heartbeat, breathing, surgical manipulation and pneumoperitoneum. In this study, we evaluated liver tumor shift and deformation due to pneumoperitoneum in an animal model. Methods: Tumor models were injected into the liver of the animal, and 3D CT images were acquired before and after insufflation. Tumor shifts and deformation were determined. Results: The results showed significant tumor position shift due to pneumoperitoneum, with a maximum of 28 mm in cranio-caudal direction. No significant tumor deformation was detected. Small standard deviations suggest rigid body transformation of the liver as a whole, but this needs further investigation. Conclusion: The findings indicate a need for anatomic shift correction of preoperative images before they are used in combination with LUS guidance during a laparoscopic liver resection procedure.
international symposium on biomedical imaging | 2013
Sinara Vijayan; Stefan Klein; Erlend Fagertun Hofstad; Frank Lindseth; Brynjulf Ystgaard; Thomas Langø
Future therapy using focused ultrasound (FUS) to treat tumors in abdominal organs, such as the liver, must incorporate motion tracking of these organs due to breathing and drift caused by gravity and intestines (peristalsis). Motion tracking of the target (e.g. tumor) is needed to ensure accurately located sonications. We have performed a quantitative validation of a methodology for motion tracking of the liver with 4D (3D+time) ultrasound. The offline analysis was done using a recently published non-rigid registration algorithm that was specifically designed for motion estimation from dynamic imaging data. The method registers the entire 4D sequence in a group-wise optimization fashion, thus avoiding a bias towards a specifically chosen reference time point. Both spatial and temporal smoothness of the transformations are enforced by using a 4D free-form B-spline deformation model. For our evaluation, three healthy volunteers were scanned over several breath cycles from three different positions and angles on the abdomen (totally nine 4D scans). A skilled physician performed the scanning and manually annotated well-defined anatomic landmarks for assessment of the automatic algorithm. Four engineers each annotated these points in all time frames, the mean of which was taken as a gold standard. The error of the automatic motion estimation method was compared with inter-observer variability. The registration method estimated liver motion better than the observers and had an error (75% percentile over all datasets) of 1 mm. We conclude that the methodology was able to accurately track the motion of the liver in the 4D ultrasound data.
Surgical Endoscopy and Other Interventional Techniques | 2013
Cecilie Våpenstad; Erlend Fagertun Hofstad; Lars Eirik Bø; Magdalena K. Chmarra; Esther Kuhry; Gjermund Johnsen; Ronald Mårvik; Thomas Langø
BackgroundSurgeons performing laparoscopy need a high degree of psychomotor skills, which can be trained and assessed on virtual reality (VR) simulators. VR simulators simulate the surgical environment and assess psychomotor skills according to predefined parameters. This study aimed to validate a proficiency-based training setup that consisted of two tasks with predefined threshold values and handles with haptic feedback on the LapSim® VR simulator. The two tasks have been found to have construct validity in previous studies using handles without haptic feedback.MethodsThe participants were divided into three groups: novices (0–50 laparoscopic procedures), intermediates (51–300 laparoscopic procedures), and experts (more than 300 procedures). It was assumed that psychomotor skills increase with experience. All participants conducted the tasks lifting and grasping and fine dissection 20 times each. Validity of the training setup was investigated by comparing the number of times each participant passed a predefined threshold level for a set of 19 parameters.ResultsConstruct validity was established for one parameter; “misses on right side” on the lifting and grasping task, whereas the other 18 parameters did not show construct validity.ConclusionThe setup employed in this study failed to establish construct validity for more than one parameter. This indicates that the simulation of haptic feedback influences the training performance on laparoscopic simulators and is an important part of validating a training setup. A haptic device should generate haptic sensations in a realistic manner, without introducing frictional forces that are not inherent to laparoscopy.
Journal of bronchology & interventional pulmonology | 2013
Håkon Olav Leira; Thomas Langø; Hanne Sorger; Erlend Fagertun Hofstad; Tore Amundsen
Background:The accuracy of navigated bronchoscopy relies on a best possible correlation between the preoperative computed tomography images used for planning and the actual tumor position during bronchoscopy. Change in lung structure during the procedure may reduce success rate. The size of the lung changes during breathing, which may be predicted and at least partly compensated by a navigation system. We have studied the effect of the bronchoscopy itself, to see if and how the procedure causes further distortions, which might be harder to predict and compensate. Methods:Using newly developed lung tracking sensors, we have measured the movement of individual lung segments during a bronchoscopy session in pigs. The bronchoscope was moved stepwise forward, ending in a wedge position, where it is often positioned when collecting peripheral biopsy specimens during conventional bronchoscopy. Results:The influence of the bronchoscope on lung segment movement was minimal while positioned in the trachea, main bronchus, or lobe bronchus. However, in the wedge position, it displaced the lung targets and reduced the natural respiratory motion. Conclusions:A bronchoscope placed in a wedge position displaces lung targets and affects their respiratory behavior. As an image navigation system guides the operator towards a position dictated by the preoperative computed tomography, the displacement found in this study may cause the operator to miss the target. This may be part of the explanation for the limited success rates reported in the literature for navigated bronchoscopy.
Physics in Medicine and Biology | 2015
Lars Eirik Bø; Erlend Fagertun Hofstad; Frank Lindseth; Toril A. Nagelhus Hernes
Within the field of ultrasound-guided procedures, there are a number of methods for ultrasound probe calibration. While these methods are usually developed for a specific probe, they are in principle easily adapted to other probes. In practice, however, the adaptation often proves tedious and this is impractical in a research setting, where new probes are tested regularly. Therefore, we developed a method which can be applied to a large variety of probes without adaptation. The method used a robot arm to move a plastic sphere submerged in water through the ultrasound image plane, providing a slow and precise movement. The sphere was then segmented from the recorded ultrasound images using a MATLAB programme and the calibration matrix was computed based on this segmentation in combination with tracking information. The method was tested on three very different probes demonstrating both great versatility and high accuracy.
PLOS ONE | 2015
Pall Jens Reynisson; Marta Scali; Erik Smistad; Erlend Fagertun Hofstad; Håkon Olav Leira; Frank Lindseth; Toril A. Nagelhus Hernes; Tore Amundsen; Hanne Sorger; Thomas Langø
Introduction Our motivation is increased bronchoscopic diagnostic yield and optimized preparation, for navigated bronchoscopy. In navigated bronchoscopy, virtual 3D airway visualization is often used to guide a bronchoscopic tool to peripheral lesions, synchronized with the real time video bronchoscopy. Visualization during navigated bronchoscopy, the segmentation time and methods, differs. Time consumption and logistics are two essential aspects that need to be optimized when integrating such technologies in the interventional room. We compared three different approaches to obtain airway centerlines and surface. Method CT lung dataset of 17 patients were processed in Mimics (Materialize, Leuven, Belgium), which provides a Basic module and a Pulmonology module (beta version) (MPM), OsiriX (Pixmeo, Geneva, Switzerland) and our Tube Segmentation Framework (TSF) method. Both MPM and TSF were evaluated with reference segmentation. Automatic and manual settings allowed us to segment the airways and obtain 3D models as well as the centrelines in all datasets. We compared the different procedures by user interactions such as number of clicks needed to process the data and quantitative measures concerning the quality of the segmentation and centrelines such as total length of the branches, number of branches, number of generations, and volume of the 3D model. Results The TSF method was the most automatic, while the Mimics Pulmonology Module (MPM) and the Mimics Basic Module (MBM) resulted in the highest number of branches. MPM is the software which demands the least number of clicks to process the data. We found that the freely available OsiriX was less accurate compared to the other methods regarding segmentation results. However, the TSF method provided results fastest regarding number of clicks. The MPM was able to find the highest number of branches and generations. On the other hand, the TSF is fully automatic and it provides the user with both segmentation of the airways and the centerlines. Reference segmentation comparison averages and standard deviations for MPM and TSF correspond to literature. Conclusion The TSF is able to segment the airways and extract the centerlines in one single step. The number of branches found is lower for the TSF method than in Mimics. OsiriX demands the highest number of clicks to process the data, the segmentation is often sparse and extracting the centerline requires the use of another software system. Two of the software systems performed satisfactory with respect to be used in preprocessing CT images for navigated bronchoscopy, i.e. the TSF method and the MPM. According to reference segmentation both TSF and MPM are comparable with other segmentation methods. The level of automaticity and the resulting high number of branches plus the fact that both centerline and the surface of the airways were extracted, are requirements we considered particularly important. The in house method has the advantage of being an integrated part of a navigation platform for bronchoscopy, whilst the other methods can be considered preprocessing tools to a navigation system.
Medical Physics | 2014
Sinara Vijayan; Stefan Klein; Erlend Fagertun Hofstad; Frank Lindseth; Brynjulf Ystgaard; Thomas Langø
PURPOSE Treatments like radiotherapy and focused ultrasound in the abdomen require accurate motion tracking, in order to optimize dosage delivery to the target and minimize damage to critical structures and healthy tissues around the target. 4D ultrasound is a promising modality for motion tracking during such treatments. In this study, the authors evaluate the accuracy of motion tracking in the liver based on deformable registration of 4D ultrasound images. METHODS The offline analysis was performed using a nonrigid registration algorithm that was specifically designed for motion estimation from dynamic imaging data. The method registers the entire 4D image data sequence in a groupwise optimization fashion, thus avoiding a bias toward a specifically chosen reference time point. Three healthy volunteers were scanned over several breathing cycles (12 s) from three different positions and angles on the abdomen; a total of nine 4D scans for the three volunteers. Well-defined anatomic landmarks were manually annotated in all 96 time frames for assessment of the automatic algorithm. The error of the automatic motion estimation method was compared with interobserver variability. The authors also performed experiments to investigate the influence of parameters defining the deformation field flexibility and evaluated how well the method performed with a lower temporal resolution in order to establish the minimum frame rate required for accurate motion estimation. RESULTS The registration method estimated liver motion with an error of 1 mm (75% percentile over all datasets), which was lower than the interobserver variability of 1.4 mm. The results were only slightly dependent on the degrees of freedom of the deformation model. The registration error increased to 2.8 mm with an eight times lower temporal resolution. CONCLUSIONS The authors conclude that the methodology was able to accurately track the motion of the liver in the 4D ultrasound data. The authors believe that the method has potential in interventions on moving abdominal organs such as MR or ultrasound guided focused ultrasound therapy and radiotherapy, pending the method is enabled to run in real-time. The data and the annotations used for this study are made publicly available for those who would like to test other methods on 4D liver ultrasound data.
Minimally Invasive Therapy & Allied Technologies | 2014
Sinara Vijayan; Ingerid Reinertsen; Erlend Fagertun Hofstad; Anna Rethy; Toril A. Nagelhus Hernes; Thomas Langø
Abstract Purpose: Surgical navigation based on preoperative images partly overcomes some of the drawbacks of minimally invasive interventions - reduction of free sight, lack of dexterity and tactile feedback. The usefulness of preoperative images is limited in laparoscopic liver surgery, as the liver shifts due to respiration, induction of pneumoperitoneum and surgical manipulation. In this study, we evaluated the shift and deformation in an animal liver caused by respiration and pneumopertioneum using intraoperative cone beam CT. Material and methods: 3D cone beam CT scans were acquired with arterial contrast. The centerlines of the segmented vessels were extracted from the images taken at different respiration and pressure settings. A non-rigid registration method was used to measure the shift and deformation. The mean Euclidean distance between the annotated landmarks was used for evaluation. Results: A shift and deformation of 44.6 mm on average was introduced due to the combined effect of respiration and pneumoperitoneum. On average 91% of the deformations caused by the respiration and pneumoperitoneum were recovered. Conclusion: The results can contribute to the use of intraoperative imaging to correct for anatomic shift so that preoperative data can be used with greater confidence and accuracy during guidance of laparoscopic liver procedures.
Minimally Invasive Therapy & Allied Technologies | 2017
Cecilie Våpenstad; Erlend Fagertun Hofstad; Lars Eirik Bø; Esther Kuhry; Gjermund Johnsen; Ronald Mårvik; Thomas Langø; Toril A. Nagelhus Hernes
Abstract Background and objective: Virtual reality (VR) simulators enrich surgical training and offer training possibilities outside of the operating room (OR). In this study, we created a criterion-based training program on a VR simulator with haptic feedback and tested it by comparing the performances of a simulator group against a control group. Material and methods: Medical students with no experience in laparoscopy were randomly assigned to a simulator group or a control group. In the simulator group, the candidates trained until they reached predefined criteria on the LapSim® VR simulator (Surgical Science AB, Göteborg, Sweden) with haptic feedback (XitactTM IHP, Mentice AB, Göteborg, Sweden). All candidates performed a cholecystectomy on a porcine organ model in a box trainer (the clinical setting). The performances were video rated by two surgeons blinded to subject training status. Results: In total, 30 students performed the cholecystectomy and had their videos rated (N = 16 simulator group, N = 14 control group). The control group achieved better video rating scores than the simulator group (p < .05). Conclusions: The criterion-based training program did not transfer skills to the clinical setting. Poor mechanical performance of the simulated haptic feedback is believed to have resulted in a negative training effect.