Erling O. Koppang
Norwegian University of Life Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Erling O. Koppang.
Journal of Anatomy | 2008
Erlend Haugarvoll; Inge Bjerkås; Bf Nowak; Ivar Hordvik; Erling O. Koppang
In addition to being the respiratory organ in fish, the gills form a barrier against the external milieu. Innate and adaptive immune system components have been detected in the gills, but lymphoid cell accumulations similar to that seen in the mammalian mucosa have not been described. The present investigations revealed cell accumulations on the caudal edge of interbranchial septum at the base of the gill filaments in the Atlantic salmon. Cytokeratin immunohistochemical staining and identification of a basal membrane and desmosome cell junctions by electron microscopy showed that the cell accumulation was located intraepithelially. Major histocompatibility complex (MHC) class II+ cells were detected by immunohistochemistry, and laser capture micro‐dissection and subsequent RT‐PCR analysis revealed expression of T‐cell receptor transcripts in the investigated tissue, suggesting the presence of T cells. The intraepithelial tissue reported here may be a suitable location for immune surveillance of gill infections, as well as a target site for new vaccine approaches and investigations of epithelial immunity. This is the first description of a lymphocyte cell aggregation within a teleostian gill epithelium network, illustrating a phylogenetically early form of leukocyte accumulations in a respiratory organ.
Journal of Anatomy | 2010
Erling O. Koppang; Uwe Fischer; Lindsey Moore; Michael A. Tranulis; Johannes Martinus Dijkstra; Bernd Köllner; Laila G. Aune; Emilio Jirillo; Ivar Hordvik
In modern bony fishes, or teleost fish, the general lack of leucocyte markers has greatly hampered investigations of the anatomy of the immune system and its reactions involved in inflammatory responses. We have previously reported the cloning and sequencing of the salmon CD3 complex, molecules that are specifically expressed in T cells. Here, we generate and validate sera recognizing a peptide sequence of the CD3ε chain. Flow cytometry analysis revealed high numbers of CD3ε+ or T cells in the thymus, gill and intestine, whereas lower numbers were detected in the head kidney, spleen and peripheral blood leucocytes. Subsequent morphological analysis showed accumulations of T cells in the thymus and spleen and in the newly discovered gill‐located interbranchial lymphoid tissue. In the latter, the T cells are embedded in a meshwork of epithelial cells and in the spleen, they cluster in the white pulp surrounding ellipsoids. The anatomical organization of the salmonid thymic cortex and medulla seems to be composed of three layers consisting of a sub‐epithelial medulla‐like zone, an intermediate cortex‐like zone and finally another cortex‐like basal zone. Our study in the salmonid thymus reports a previously non‐described tissue organization. In the intestinal tract, abundant T cells were found embedded in the epithelium. In non‐lymphoid organs, the presence of T cells was limited. The results show that the interbranchial lymphoid tissue is quantitatively a very important site of T cell aggregation, strategically located to facilitate antigen encounter. The interbranchial lymphoid tissue has no resemblance to previously described lymphoid tissues.
Journal of Immunology | 2008
Erling O. Koppang; Inge Bjerkås; Erlend Haugarvoll; Edward K. L. Chan; Nancy J. Szabo; Nobutaka Ono; Bunshiro Akikusa; Emilio Jirillo; Trygve T. Poppe; Harald Sveier; Brit Tørud; Minoru Satoh
Over half of the salmon consumed globally are farm-raised. The introduction of oil-adjuvanted vaccines into salmon aquaculture made large-scale production feasible by preventing infections. The vaccines that are given i.p. contain oil adjuvant such as mineral oil. However, in rodents, a single i.p. injection of adjuvant hydrocarbon oil induces lupus-like systemic autoimmune syndrome, characterized by autoantibodies, immune complex glomerulonephritis, and arthritis. In the present study, whether the farmed salmon that received oil-adjuvanted vaccine have autoimmune syndrome similar to adjuvant oil-injected rodents was examined. Sera and tissues were collected from vaccinated or unvaccinated Atlantic salmon (experimental, seven farms) and wild salmon. Autoantibodies (immunofluorescence, ELISA, and immunoprecipitation) and IgM levels (ELISA) in sera were measured. Kidneys and livers were examined for pathology. Autoantibodies were common in vaccinated fish vs unvaccinated controls and they reacted with salmon cells/Ags in addition to their reactivity with mammalian Ags. Diffuse nuclear/cytoplasmic staining was common in immunofluorescence but some had more specific patterns. Serum total IgM levels were also increased in vaccinated fish; however, the fold increase of autoantibodies was much more than that of total IgM. Sera from vaccinated fish immunoprecipitated ferritin and ∼50% also reacted with other unique proteins. Thrombosis and granulomatous inflammation in liver, and immune-complex glomerulonephritis were common in vaccinated fish. Autoimmunity similar to the mouse model of adjuvant oil-induced lupus is common in vaccinated farmed Atlantic salmon. This may have a significant impact on production loss, disease of previously unknown etiology, and future strategies of vaccines and salmon farming.
Vaccine | 2010
Erlend Haugarvoll; Inge Bjerkås; Nancy J. Szabo; Minoru Satoh; Erling O. Koppang
The development of systemic autoimmunity may result as an undesired side-effect following vaccination, and this condition was recently shown to occur in farmed salmon (Salmo salar). Several of previously reported side-effects following vaccination of fish should therefore be reviewed in the light of this condition. Here, organs and pathological changes in three separate groups of fish severely affected by vaccination were investigated by different morphological methods (n=84). Granulomas or microgranulomas were observed at the injection site and in several organs. Mott cells were observed in all tissues examined. Pannus-like changes with lymphocyte infiltrates were observed in spines. In conclusion, the reactions following vaccination were of a systemic nature that may be explained by a pathogenetic mechanism caused by systemic autoimmunity.
Cancer Research | 2009
Ole B. Dale; Brit Tørud; Agnar Kvellestad; Hanna S. Koppang; Erling O. Koppang
Neoplasms in fish normally show poor abilities for metastasis, and there are no reports on intestinal cancer with metastasis to other organs. In aquaculture production, carnivorous salmonids in Northern Europe receive commercial feeds with plant ingredients. Such contents have been shown to cause chronic intestinal inflammation. Inflammation provokes carcinogenesis in the human gut, and here, we report a similar pathologic progression in salmonids. Nine commercially farmed groups of Atlantic salmon and rainbow trout (n = 39,160) and one experimental positive group (n = 789) fed the same commercial feed and two negative control groups (n = 3009) were investigated for the occurrence of intestinal tumors and metastases. Exposure period, gender, and sexual maturation were registered. Autopsy revealed an overall intestinal tumor occurrence of 10.62%, of which liver metastasis varied from 0% to 11.35% between the groups. Intestinal cancer prevalence increased from 0.50% to 14.81% during 4 months of feeding in the experimental group. A significant gender effect was registered in the commercially farmed groups but not in the experimental group. Histologic examination showed adenocarcinomas evolving through progressive epithelial dysplasia associated with severe chronic inflammation. One intestinal tumor was registered in one individual in the negative control groups. This is the first report on feed-induced intestinal carcinogenesis and metastasizing adenocarcinomas in fish fed an approved commercial diet. The pathogenesis was associated with a certain commercial diet provoking the inflammation-dysplasia-carcinoma sequence. The histologic progression was analogous to that of human colorectal cancer associated with inflammatory bowel disease.
Journal of Anatomy | 2013
Maria Aamelfot; Simon Chioma Weli; Ole Bendik Dale; Erling O. Koppang; Knut Falk
Endothelial cells (ECs) line the luminal surfaces of the cardiovascular system and play an important role in cardiovascular functions such as regulation of haemostasis and vasomotor tone. A number of fish and mammalian viruses target these cells in the course of their infection. Infectious salmon anaemia virus (ISAV) attacks ECs and red blood cells (RBCs) of farmed Atlantic salmon (Salmo salar L.), producing the severe disease of infectious salmon anaemia (ISA). The investigation of ISA has up to now been hampered by the lack of a functional marker for ECs in Atlantic salmon in situ. In this study, we report the characterisation and use of a novel monoclonal antibody (MAb) detecting Atlantic salmon ECs (e.g. vessel endothelium, endocardial cells and scavenger ECs) and RBCs. The antibody can be used with immunohistochemistry, IFAT and on Western blots. It appears that the epitope recognised by the antibody is associated with the ISAV cellular receptor. Besides being a tool to identify ECs in situ, it could be useful in further studies of the pathogenicity of ISA. Finally, the detection of an epitope shared by ECs and RBCs agrees with recent findings that these cells share a common origin, thus the MAb can potentially be used to study the ontogeny of these cells in Atlantic salmon.
Fish & Shellfish Immunology | 2012
Hilde A.S. Larsen; Lars Austbø; Turid Mørkøre; Jim Thorsen; Ivar Hordvik; Uwe Fischer; Emilio Jirillo; Espen Rimstad; Erling O. Koppang
Melanin comprises a complex group of pigmented polymers whose primary function is ascribed to dermal solar protection, but may also have an interesting role in innate immunity. In ectothermic vertebrates, melanogenesis is reported in leukocyte populations, but it is not known if this occurs in connection with inflammatory reactions. Melanin accumulations in ectopic locations, in particular muscle, represent a serious quality problem in salmon production. Here, we investigated such changes for the expression of dopachrome tautomerase and tyrosinase as well as some important immune genes and pathogens. Furthermore, the nature of the pathological changes was addressed by morphological methods. Gene transcripts encoding key enzymes in melanogenesis, suggesting a de novo melanin synthesis in pigmented muscle, were found. MHC class II transcripts were up-regulated and there was no indication of bacterial or viral infection. The histological examination revealed granulomatous inflammation with distribution of MHC class II positive cells and T cells, analogous to the pattern found in mammals. Importantly, in contrast to mammals pigmented cells were contributing in the inflammation. We demonstrate that melanin production occurs in granulomatous inflammation in salmon, revealing a close and hitherto unreported link between the pigmentary and immune systems.
Journal of Immunology | 2014
Ida Bergva Aas; Lars Austbø; Melanie König; Mohasina Syed; Knut Falk; Ivar Hordvik; Erling O. Koppang
Previously, our group has shown that the interbranchial lymphoid tissue (ILT) is a distinct structure largely consisting of T cells embedded in a meshwork of epithelial cells, with no direct resemblance to previously described lymphoid tissues. In this study, we aim to focus on the T cell population and the possibility of the ILT being a thymus analog. By characterizing structural responsiveness to Ag challenge, the presence of recombination activating genes, and different T cell–related transcripts, we attempt to further approach the immunological function of the ILT in salmonid gills. In addition to eight healthy individuals, a group of eight infectious salmon anemia virus–challenged fish were included to observe T cell responses related to infection. The results showed reduced size of ILT in the infected group, no expression of RAG-1 and -2, and a high degree of T cell diversity within the ILT. Taking into account that the ILT can be regarded as a strategically located T cell reservoir and possibly an evolutionary forerunner of mammalian MALTs right at the border to the external environment, the alteration in transcription observed may likely represent a shift in the T cell population to optimize local gill defense mechanisms.
Fish & Shellfish Immunology | 2011
Minoru Satoh; Inge Bjerkås; Erlend Haugarvoll; Edward K. L. Chan; Nancy J. Szabo; Emilio Jirillo; Trygve T. Poppe; Harald Sveier; Brit Tørud; Erling O. Koppang
The introduction of oil-adjuvanted vaccines in salmon aquaculture made large-scale production feasible by reducing the impact of infections. Vaccines given intraperitoneally (ip) contain oil adjuvant such as mineral oil. However, in rodents, a single ip injection of adjuvant hydrocarbon oil induces lupus-like systemic autoimmune syndrome. We have recently reported that autoimmune disease in farmed salmon, characterized by production of various autoantibodies, immune complex glomerulonephritis, liver thrombosis, and spinal deformity, are previously unrecognized side effects of vaccination. In the present study, we examined whether vaccination-induced autoantibody production in farmed Atlantic salmon is a mere result of polyclonal B-cell activation. Sera were collected from 205 vaccinated and unvaccinated Atlantic salmon (experimental, 7 farms) and wild salmon. Total IgM levels and autoantibodies to salmon blood cell (SBC) extract in sera were measured by ELISA and the relationship between hypergammaglobulinemia and autoantibody production was analyzed. Comparison of endpoint titers vs levels/units using a single dilution of sera in detection of autoantibodies to SBC showed near perfect correlation, justifying the use of the latter for screening. Both total IgM and anti-SBC antibodies are increased in vaccinated salmon compared with unvaccinated controls, however, they do not always correlate well when compared between groups or between individuals, suggesting the involvement of antigen-specific mechanisms in the production of anti-SBC autoantibodies. The primary considerations of successful vaccine for aquaculture are cost-effectiveness and safety. Vaccination-induced autoimmunity in farmed Atlantic salmon may have consequences on future vaccine development and salmon farming strategy. Evaluation for polyclonal hypergamamglobulinemia and autoimmunity should be included as an important trait when vaccine efficacy and safety are evaluated in future.
Journal of Morphology | 2015
Alf Seljenes Dalum; Lars Austbø; Håvard Bjørgen; Karsten Skjødt; Ivar Hordvik; Tom Hansen; Per Gunnar Fjelldal; Charles McL. Press; David Griffiths; Erling O. Koppang
The teleost gill forms an extensive, semipermeable barrier that must tolerate intimate contact with the surrounding environment and be able to protect the body from external pathogens. The recent discovery of the interbranchial lymphoid tissue (ILT) has initiated an anatomical and functional investigation of the lymphoid tissue of the salmonid gill. In this article, sectioning of gill arches in all three primary planes revealed an elongation of the ILT outward along the trailing edge of the primary filament to the very distal end, a finding not previously described. This newly found lymphoid tissue was investigated using a range of morphological and transcriptional tools. Avoiding potential salinity‐related effects, the study focused on two fresh‐water life stages—smoltifying juveniles and mature adults. Aggregates of T‐cells continuous with the ILT were found within the thick epithelial lining of the trailing edge of the filament in considerably larger numbers than seen in the epithelium of the leading edge and of the interlamellar area. Only a few of these cells were identified as CD8α+‐cells, and there was a significantly (P < 0.05) higher relative expression of CD4‐ than of CD8‐ related genes in all gill segments investigated. Numerous major histocompatibility complex class II+‐cells were distributed uniformly throughout the filament epithelial tissue. Few Ig+‐cells were detected. Overall, the morphological features and comparable immune gene expression of the previously described ILT and the filament trailing edge lymphoid tissue suggest a close functional and anatomical relationship. We propose that the anatomical definition of the ILT must be broadened to include both the previously described ILT (to be renamed proximal ILT) and the trailing edge lymphoid tissue (to be named distal ILT). This extended anatomical localisation identifies the ILT as a widely distributed mucosal lymphoid tissue in the gill of Atlantic salmon. J. Morphol. 276:1075–1088, 2015.