Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erna Cleiren is active.

Publication


Featured researches published by Erna Cleiren.


American Journal of Human Genetics | 2003

Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density.

Liesbeth Van Wesenbeeck; Erna Cleiren; Jeppe Gram; Rodney K. Beals; Olivier Bénichou; Domenico Scopelliti; Lyndon Key; Tara Renton; Cindy Bartels; Yaoqin Gong; Matthew L. Warman; Marie-Christine de Vernejoul; Jens Bollerslev; Wim Van Hul

Bone is a dynamic tissue that is subject to the balanced processes of bone formation and bone resorption. Imbalance can give rise to skeletal pathologies with increased bone density. In recent years, several genes underlying such sclerosing bone disorders have been identified. The LDL receptor-related protein 5 (LRP5) gene has been shown to be involved in both osteoporosis-pseudoglioma syndrome and the high-bone-mass phenotype and turned out to be an important regulator of peak bone mass in vertebrates. We performed mutation analysis of the LRP5 gene in 10 families or isolated patients with different conditions with an increased bone density, including endosteal hyperostosis, Van Buchem disease, autosomal dominant osteosclerosis, and osteopetrosis type I. Direct sequencing of the LRP5 gene revealed 19 sequence variants. Thirteen of these were confirmed as polymorphisms, but six novel missense mutations (D111Y, G171R, A214T, A214V, A242T, and T253I) are most likely disease causing. Like the previously reported mutation (G171V) that causes the high-bone-mass phenotype, all mutations are located in the aminoterminal part of the gene, before the first epidermal growth factor-like domain. These results indicate that, despite the different diagnoses that can be made, conditions with an increased bone density affecting mainly the cortices of the long bones and the skull are often caused by mutations in the LRP5 gene. Functional analysis of the effects of the various mutations will be of interest, to evaluate whether all the mutations give rise to the same pathogenic mechanism.


Calcified Tissue International | 2008

The Binding Between Sclerostin and LRP5 is Altered by DKK1 and by High-Bone Mass LRP5 Mutations

Wendy Balemans; Elke Piters; Erna Cleiren; Minrong Ai; Liesbeth Van Wesenbeeck; Matthew L. Warman; Wim Van Hul

Low-density lipoprotein receptor–related protein 5 (LRP5), a Wnt coreceptor, plays an important role in bone metabolism as loss-of-function and gain-of-function mutations in LRP5 result in the autosomal recessive osteoporosis-pseudoglioma syndrome and autosomal dominant high–bone mass (HBM) phenotypes, respectively. Prior studies suggested that the presence of HBM-associated LRP5 mutations results in decreased antagonism of LRP5-mediated Wnt signaling. In the present study, we investigated six different HBM-LRP5 mutations and confirm that neither Dickkopf1 (DKK1) nor sclerostin efficiently inhibits HBM-LRP5 signaling. In addition, when coexpressed, DKK1 and sclerostin do not inhibit HBM-LRP5 mutants better than either inhibitor by itself. Also, DKK1 and sclerostin do not simultaneously bind to wild-type LRP5, and DKK1 is able to displace sclerostin from previously formed sclerostin–LRP5 complexes. In conclusion, our results indicate that DKK1 and sclerostin are independent, and not synergistic, regulators of LRP5 signaling and that the function of each is impaired by HBM-LRP5 mutations.


Journal of Medical Genetics | 2000

The ALX4 homeobox gene is mutated in patients with ossification defects of the skull (foramina parietalia permagna, OMIM 168500)

Wim Wuyts; Erna Cleiren; Tessa Homfray; Alberto Rasore-Quartino; Filip Vanhoenacker; Wim Van Hul

Foramina parietalia permagna (FPP) (OMIM 168500) is caused by ossification defects in the parietal bones. Recently, it was shown that loss of function mutations in the MSX2homeobox gene on chromosome 5 are responsible for the presence of these lesions in some FPP patients. However, the absence ofMSX2 mutations in some of the FPP patients analysed and the presence of FPP associated with chromosome 11p deletions in DEFECT 11 (OMIM 601224) patients or associated with Saethre-Chotzen syndrome suggests genetic heterogeneity for this disorder. Starting from a BAC/P1/cosmid contig of the DEFECT 11 region on chromosome 11, we have now isolated theALX4 gene, a previously unidentified member of the ALX homeobox gene family in humans. Mutation analysis of the ALX4 gene in three unrelated FPP families without the MSX2mutation identified mutations in two families, indicating that mutations in ALX4 could be responsible for these skull defects and suggesting further genetic heterogeneity of FPP.


Journal of Virology | 2007

Binding-Site Identification and Genotypic Profiling of Hepatitis C Virus Polymerase Inhibitors

Frederik Pauwels; Wendy Mostmans; Ludo Maria Marcel Quirynen; Liesbet van der Helm; Carlo Boutton; Anne-Stéphanie Rueff; Erna Cleiren; Pierre Jean-Marie Bernard Raboisson; Dominique Surleraux; Origène Nyanguile; Kenneth Alan Simmen

ABSTRACT The search for hepatitis C virus polymerase inhibitors has resulted in the identification of several nonnucleoside binding pockets. The shape and nature of these binding sites differ across and even within diverse hepatitis C virus genotypes. These differences confront antiviral drug discovery with the challenge of finding compounds that are capable of inhibition in variable binding pockets. To address this, we have established a hepatitis C virus mutant and genotypic recombinant polymerase panel as a means of guiding medicinal chemistry through the elucidation of the site of action of novel inhibitors and profiling against genotypes. Using a genotype 1b backbone, we demonstrate that the recombinant P495L, M423T, M414T, and S282T mutant enzymes can be used to identify the binding site of an acyl pyrrolidine analog. We assess the inhibitory activity of this analog and other nonnucleoside inhibitors with our panel of enzyme isolates generated from clinical sera representing genotypes 1a, 1b, 2a, 2b, 3a, 4a, 5a, and 6a.


Journal of Bone and Mineral Research | 2007

Novel **LRP5** missense mutation in a patient with a high bone mass phenotype results in decreased DKK1-mediated inhibition of Wnt signaling

Wendy Balemans; Jean-Pierre Devogelaer; Erna Cleiren; Elke Piters; Emanuelle Caussin; Wim Van Hul

We found a novel heterozygous missense mutation (M282V) in the LRP5 gene in a patient with a high bone mass phenotype. In vitro studies suggest that a reduced antagonistic effect of DKK1 on canonical Wnt signaling contributes to the molecular effect of this mutation and its pathogenic consequence.


Journal of Virology | 2010

1a/1b Subtype Profiling of Nonnucleoside Polymerase Inhibitors of Hepatitis C Virus

Origène Nyanguile; Benoit Devogelaere; Leen Vijgen; Walter Van den Broeck; Frederik Pauwels; Maxwell D. Cummings; Hendrik L. De Bondt; Ann Vos; Jan Martin Berke; Oliver Lenz; Geneviève Vandercruyssen; Katrien Vermeiren; Wendy Mostmans; Pascale Dehertogh; Frédéric Delouvroy; Sandrine Marie Helene Vendeville; Koen Vandyck; Koen Dockx; Erna Cleiren; Pierre Jean-Marie Bernard Raboisson; Kenneth Alan Simmen; Gregory Fanning

ABSTRACT The RNA-dependent RNA polymerase (NS5B) of hepatitis C virus (HCV) is an unusually attractive target for drug discovery since it contains five distinct drugable sites. The success of novel antiviral therapies will require nonnucleoside inhibitors to be active in at least patients infected with HCV of subtypes 1a and 1b. Therefore, the genotypic assessment of these agents against clinical isolates derived from genotype 1-infected patients is an important prerequisite for the selection of suitable candidates for clinical development. Here we report the 1a/1b subtype profiling of polymerase inhibitors that bind at each of the four known nonnucleoside binding sites. We show that inhibition of all of the clinical isolates tested is maintained, except for inhibitors that bind at the palm-1 binding site. Subtype coverage varies across chemotypes within this class of inhibitors, and inhibition of genotype 1a improves when hydrophobic contact with the polymerase is increased. We investigated if the polymorphism of the palm-1 binding site is the sole cause of the reduced susceptibility of subtype 1a to inhibition by 1,5-benzodiazepines by using reverse genetics, X-ray crystallography, and surface plasmon resonance studies. We showed Y415F to be a key determinant in conferring resistance on subtype 1a, with this effect being mediated through an inhibitor- and enzyme-bound water molecule. Binding studies revealed that the mechanism of subtype 1a resistance is faster dissociation of the inhibitor from the enzyme.


Antimicrobial Agents and Chemotherapy | 2012

TMC647055, a Potent Nonnucleoside Hepatitis C Virus NS5B Polymerase Inhibitor with Cross-Genotypic Coverage

Benoit Devogelaere; Jan Martin Berke; Leen Vijgen; Pascale Dehertogh; Els Fransen; Erna Cleiren; Liesbet van der Helm; Origène Nyanguile; Abdellah Tahri; Katie Amssoms; Oliver Lenz; Maxwell D. Cummings; Reginald Clayton; Sandrine Marie Helene Vendeville; Pierre Jean-Marie Bernard Raboisson; Kenneth Alan Simmen; Gregory Fanning; Tse-I Lin

ABSTRACT Hepatitis C virus (HCV) infection is a major global health burden and is associated with an increased risk of liver cirrhosis and hepatocellular carcinoma. There remains an unmet medical need for efficacious and safe direct antivirals with complementary modes of action for combination in treatment regimens to deliver a high cure rate with a short duration of treatment for HCV patients. Here we report the in vitro inhibitory activity, mode of action, binding kinetics, and resistance profile of TMC647055, a novel and potent nonnucleoside inhibitor of the HCV NS5B RNA-dependent RNA polymerase. In vitro combination studies with an HCV NS3/4A protease inhibitor demonstrated potent suppression of HCV RNA replication, confirming the potential for combination of these two classes in the treatment of chronic HCV infection. TMC647055 is a potent nonnucleoside NS5B polymerase inhibitor of HCV replication with a promising in vitro biochemical, kinetic, and virological profile that is currently undergoing clinical evaluation.


Bioorganic & Medicinal Chemistry Letters | 2009

1,5-Benzodiazepine inhibitors of HCV NS5B polymerase

David McGowan; Origène Nyanguile; Maxwell D. Cummings; Sandrine Marie Helene Vendeville; Koen Vandyck; Walter Van den Broeck; Carlo Willy Maurice Boutton; Hendrik L. De Bondt; Ludo Maria Marcel Quirynen; Katie Ingrid Eduard Amssoms; Jean-François Bonfanti; Klara Rombauts; Abdellah Tahri; Lili Hu; Frédéric Delouvroy; Katrien Vermeiren; Geneviève Vandercruyssen; Liesbet Van der Helm; Erna Cleiren; Wendy Mostmans; Pedro Lory; Geert Pille; Kristof Van Emelen; Gregory Fanning; Frederik Pauwels; Tse-I Lin; Kenneth Simmen; Pierre Jean-Marie Bernard Raboisson

Optimization through parallel synthesis of a novel series of hepatitis C virus (HCV) NS5B polymerase inhibitors led to the identification of (R)-11-(4-benzyloxy-2-fluorophenyl)-6-hydroxy-3,3-dimethyl-10-(6-methylpyridine-2-carbonyl)-2,3,4,5,10,11-hexahydro-dibenzo[b,e][1,4]diazepin-1-one 11zc and (R)-11-(4-benzyloxy-2-fluorophenyl)-6-hydroxy-3,3-dimethyl-10-(2,5-dimethyloxazol-4-carbonyl)-2,3,4,5,10,11-hexahydro-dibenzo[b,e][1,4]diazepin-1-one 11zk as potent (replicon EC(50)=400nM and 270nM, respectively) and selective (CC(50)>20muM) inhibitors of HCV replication. These data warrant further lead-optimization efforts.


Journal of Bone and Mineral Research | 2005

An Autosomal Dominant High Bone Mass Phenotype in Association With Craniosynostosis in an Extended Family Is Caused by an LRP5 Missense Mutation

Mei Lan Kwee; Wendy Balemans; Erna Cleiren; Johan J. P. Gille; Frits Van Der Blij; Jan M. Sepers; Wim Van Hul

Gain‐of‐function mutations in LRP5 have been shown to cause high BMD disorders showing variable expression of some clinical symptoms, including torus palatinus and neurological complications. In an extended family, we were able to add craniosynostosis and developmental delay to the clinical spectrum associated with LRP5 mutations.


Journal of Bone and Mineral Research | 2005

Missense mutations in LRP5 are not a common cause of idiopathic osteoporosis in adult men.

Patricia Crabbe; Wendy Balemans; Andy Willaert; Inge Van Pottelbergh; Erna Cleiren; Paul Coucke; Minrong Ai; Stefan Goemaere; Wim Van Hul; Anne De Paepe; Jean-Marc Kaufman

We studied whether the LRP5 gene contributes to the clinical phenotype of IO in men. Mutation analysis in 66 IO men revealed a range of sequence variants, of which two missense variants were shown to be of functional relevance.

Collaboration


Dive into the Erna Cleiren's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge