Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ernane Torres Uchoa is active.

Publication


Featured researches published by Ernane Torres Uchoa.


Journal of Neuroendocrinology | 2014

Novel aspects of glucocorticoid actions.

Ernane Torres Uchoa; Greti Aguilera; James P. Herman; Jenny L. Fiedler; Terrence Deak; Maria Bernardete Cordeiro de Sousa

Normal hypothalamic‐pituitary‐adrenal (HPA) axis activity leading to the rhythmic and episodic release of adrenal glucocorticoids (GCs) is essential for body homeostasis and survival during stress. Acting through specific intracellular receptors in the brain and periphery, GCs regulate behaviour, as well as metabolic, cardiovascular, immune and neuroendocrine activities. By contrast to chronic elevated levels, circadian and acute stress‐induced increases in GCs are necessary for hippocampal neuronal survival and memory acquisition and consolidation, as a result of the inhibition of apoptosis, the facilitation of glutamatergic neurotransmission and the formation of excitatory synapses, and the induction of immediate early genes and dendritic spine formation. In addition to metabolic actions leading to increased energy availability, GCs have profound effects on feeding behaviour, mainly via the modulation of orexigenic and anorixegenic neuropeptides. Evidence is also emerging that, in addition to the recognised immune suppressive actions of GCs by counteracting adrenergic pro‐inflammatory actions, circadian elevations have priming effects in the immune system, potentiating acute defensive responses. In addition, negative‐feedback by GCs involves multiple mechanisms leading to limited HPA axis activation and prevention of the deleterious effects of excessive GC production. Adequate GC secretion to meet body demands is tightly regulated by a complex neural circuitry controlling hypothalamic corticotrophin‐releasing hormone (CRH) and vasopressin secretion, which are the main regulators of pituitary adrenocorticotrophic hormone (ACTH). Rapid feedback mechanisms, likely involving nongenomic actions of GCs, mediate the immediate inhibition of hypothalamic CRH and ACTH secretion, whereas intermediate and delayed mechanisms mediated by genomic actions involve the modulation of limbic circuitry and peripheral metabolic messengers. Consistent with their key adaptive roles, HPA axis components are evolutionarily conserved, being present in the earliest vertebrates. An understanding of these basic mechanisms may lead to novel approaches for the development of diagnostic and therapeutic tools for disorders related to stress and alterations of GC secretion.


Journal of Applied Physiology | 2009

Hypophagia induced by glucocorticoid deficiency is associated with an increased activation of satiety-related responses

Ernane Torres Uchoa; Henrique Sabino; Silvia Graciela Ruginsk; José Antunes-Rodrigues; Lucila Leico Kagohara Elias

Glucocorticoids have major effects on food intake, demonstrated by the decrease of food intake following adrenalectomy. Satiety signals are relayed to the nucleus of the solitary tract (NTS), which has reciprocal projections with the arcuate nucleus (ARC) and paraventricular nucleus (PVN) of the hypothalamus. We evaluated the effects of glucocorticoids on the activation of hypothalamic and NTS neurons induced by food intake in rats subjected to adrenalectomy (ADX) or sham surgery 7 days before the experiments. One-half of ADX animals received corticosterone (ADX+B) in the drinking water (B: 25 mg/l). Fos/tyrosine hydroxylase (TH), Fos/corticotrophin-releasing factor (CRF) and Fos immunoreactivity were assessed in the NTS, PVN, and ARC, respectively. Food intake and body weight were reduced in the ADX group compared with sham and ADX+B groups. Fos and Fos/TH in the NTS, Fos, and Fos/CRF immunoreactive neurons in the PVN and Fos in the ARC were increased after refeeding, with higher number in the ADX group, compared with sham and ADX+B groups. CCK administration showed no hypophagic effect on ADX group despite a similar increase of Fos/TH immunoreactive neurons in the NTS compared with sham and ADX+B groups, suggesting that CCK alone cannot further increase the anorexigenic effect induced by glucocorticoid deficiency. The present data indicate that glucocorticoid withdrawal reduced food intake, which was associated with higher activation of ARC, CRF neurons of the PVN, and catecholaminergic neurons of the NTS. In the absence of glucocorticoids, satiety signals elicited during a meal lead to an augmented activation of brain stem and hypothalamic pathways.


Neuropeptides | 2012

Glucocorticoids are required for meal-induced changes in the expression of hypothalamic neuropeptides.

Ernane Torres Uchoa; Lilian Marques Silva; Margaret de Castro; José Antunes-Rodrigues; Lucila Leico Kagohara Elias

Glucocorticoid deficiency is associated with a decrease of food intake. Orexigenic peptides, neuropeptide Y (NPY) and agouti related protein (AgRP), and the anorexigenic peptide proopiomelanocortin (POMC), expressed in the arcuate nucleus of the hypothalamus (ARC), are regulated by meal-induced signals. Orexigenic neuropeptides, melanin-concentrating hormone (MCH) and orexin, expressed in the lateral hypothalamic area (LHA), also control food intake. Thus, the present study was designed to test the hypothesis that glucocorticoids are required for changes in the expression of hypothalamic neuropeptides induced by feeding. Male Wistar rats (230-280 g) were subjected to ADX or sham surgery. ADX animals received 0.9% NaCl in the drinking water, and half of them received corticosterone in the drinking water (B: 25 mg/L, ADX+B). Six days after surgery, animals were fasted for 16 h and they were decapitated before or 2 h after refeeding for brain tissue and blood collections. Adrenalectomy decreased NPY/AgRP and POMC expression in the ARC in fasted and refed animals, respectively. Refeeding decreased NPY/AgRP and increased POMC mRNA expression in the ARC of sham and ADX+B groups, with no effects in ADX animals. The expression of MCH and orexin mRNA expression in the LHA was increased in ADX and ADX+B groups in fasted condition, however there was no effect of refeeding on the expression of MCH and orexin in the LHA in the three experimental groups. Refeeding increased plasma leptin and insulin levels in sham and ADX+B animals, with no changes in leptin concentrations in ADX group, and insulin response to feeding was lower in this group. Taken together, these data demonstrated that circulating glucocorticoids are required for meal-induced changes in NPY, AgRP and POMC mRNA expression in the ARC. The lower leptin and insulin responses to feeding may contribute to the altered hypothalamic neuropeptide expression after adrenalectomy.


Experimental Neurology | 2010

CB1 modulation of hormone secretion, neuronal activation and mRNA expression following extracellular volume expansion

Silvia Graciela Ruginsk; Ernane Torres Uchoa; L.L.K. Elias; José Antunes-Rodrigues

The endocannabinoid system includes important signaling molecules that are involved in several homeostatic and neuroendocrine functions. In the present study, we evaluated the effects of the type 1 cannabinoid (CB(1)) receptor antagonist, rimonabant (10 mg/kg, p.o.), on hormone secretion, neuronal activation and mRNA expression in the hypothalamus following isotonic (I-) or hypertonic (H-) extracellular volume expansion (EVE). The total nitrate content in the PVN and SON was also assessed under the same experimental conditions. Our results showed that OT and AVP plasma concentrations were increased in response to H-EVE, while decreased AVP levels were found following I-EVE. Accordingly, both I- and H-EVE stimulated oxytocinergic neuronal activation, as evidenced by the increased number of c-Fos/OT double labeled neurons in the hypothalamus. The vasopressinergic cells of the PVN and SON, however, were only activated in response to H-EVE. Furthermore, increased amounts of both AVP and OT mRNAs were found in the hypothalamus following EVE. Pretreatment with rimonabant significantly potentiated hormone secretion and also vasopressinergic and oxytocinergic neuronal activation induced by EVE, although decreased AVP and OT mRNA expression was found in the hypothalami of rimonabant pretreated groups. In addition, the nitrate content in the PVN and SON was not altered in response to EVE or rimonabant pretreatment. Taken together, these results suggest that the CB(1) receptor may modulate several events that contribute to the development of appropriate responses to increased fluid volume and osmolality.


Hormones and Behavior | 2009

Hypothalamic oxytocin neurons modulate hypophagic effect induced by adrenalectomy.

Ernane Torres Uchoa; Lilian Eslaine Costa Mendes da Silva; Margaret de Castro; José Antunes-Rodrigues; Lucila Leico Kagohara Elias

Glucocorticoids have major effects on food intake, as demonstrated by the decrease of food intake following adrenalectomy (ADX); however, the mechanisms leading to these effects are not well understood. Oxytocin (OT) has been shown to reduce food intake. We evaluated the effects of glucocorticoids on OT neuron activation and OT mRNA expression in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei induced by feeding. We also evaluated the effect of pretreatment with OT-receptor antagonist ([d(CH2)5,Tyr(Me)2,Orn8]-vasotocin, OVT) on food intake in ADX rats. Fos/OT neurons in the posterior parvocellular subdivision of the PVN were increased after refeeding, with a higher number in the ADX group, compared with sham and ADX+corticosterone (B) groups, with no difference in the medial parvocellular and magnocellular subdivisions of the PVN. ADX increased OT mRNA expression in the PVN both in fasting and refeeding condition, compared with sham and ADX+B groups. In the SON, refeeding increased the number of Fos/OT neurons, with a higher number in the ADX+B group. In fasted condition, OT mRNA expression in the SON was increased in ADX and ADX+B, compared with sham group. Pretreatment with OVT reversed the ADX-induced hypophagia, with no difference between sham and ADX+B animals. The present results show that glucocorticoid withdrawal induces a higher activation of PVN OT neurons in response to feeding, and an increase of OT mRNA expression in the PVN and OT-receptor antagonist reverses the anorexigenic effect induced by ADX. These data indicate that PVN OT neurons might mediate the hypophagic effect induced by adrenalectomy.


Alcohol and Alcoholism | 2013

Time-Course of Neuroendocrine Changes and Its Correlation with Hypertension Induced by Ethanol Consumption

Andreia Lopes da Silva; Silvia Graciela Ruginsk; Ernane Torres Uchoa; Carlos C. Crestani; América A. Scopinho; F.M.A. Corrêa; Bruno Spinosa De Martinis; Lucila Leico Kagohara Elias; Leonardo B. M. Resstel; José Antunes-Rodrigues

UNLABELLED Ethanol (ETOH) consumption has been associated with endocrine and autonomic changes, including the development of hypertension. However, the sequence of pathophysiological events underlying the emergence of this effect is poorly understood. AIMS This study aimed to establish a time-course correlation between neuroendocrine and cardiovascular changes contributing to the development of hypertension following ETOH consumption. METHODS Male adult Wistar rats were subjected to the intake of increasing ETOH concentrations in their drinking water (first week: 5%, second week: 10%, third and fourth weeks: 20% v/v). RESULTS ETOH consumption decreased plasma and urinary volumes, as well as body weight and fluid intake. Furthermore, plasma osmolality, plasma sodium and urinary osmolality were elevated in the ETOH-treated rats. ETOH intake also induced a progressive increase in the mean arterial pressure (MAP), without affecting heart rate. Initially, this increase in MAP was correlated with increased plasma concentrations of adrenaline and noradrenaline. After the second week of ETOH treatment, plasma catecholamines returned to basal levels, and incremental increases were observed in plasma concentrations of vasopressin (AVP) and angiotensin II (ANG II). Conversely, plasma oxytocin, atrial natriuretic peptide, prolactin and the hypothalamus-pituitary-adrenal axis components were not significantly altered by ETOH. CONCLUSIONS Taken together, these results suggest that increased sympathetic activity may contribute to the early increase in MAP observed in ETOH-treated rats. However, the maintenance of this effect may be predominantly regulated by the long-term increase in the secretion of other circulating factors, such as AVP and ANG II, the secretion of both hormones being stimulated by the ETOH-induced dehydration.


Neuroscience | 2011

HYPOTHALAMIC COCAINE- AND AMPHETAMINE-REGULATED TRANSCRIPT AND CORTICOTROPHIN RELEASING FACTOR NEURONS ARE STIMULATED BY EXTRACELLULAR VOLUME AND OSMOTIC CHANGES

Silvia Graciela Ruginsk; Ernane Torres Uchoa; L.L.K. Elias; José Antunes-Rodrigues; Ida J. Llewellyn-Smith

Several studies suggest that hypothalamic cocaine- and amphetamine-regulated transcript (CART) may interact with the hypothalamic-pituitary-adrenal (HPA) axis in the control of neuroendocrine function and may also participate in cardiovascular regulation. Therefore, this study aimed to evaluate, in experimental models of isotonic (I-EVE) and hypertonic (H-EVE) extracellular volume expansion and water deprivation (WD), the activation of CART- and corticotrophin releasing factor (CRF)-immunoreactive neurons, as well as the relative expression of CART and CRF mRNAs in the paraventricular (PVN) and supraoptic (SON) nuclei of the hypothalamus. Both H-EVE (0.30M NaCl, 2mL/100g of body weight, in 1 minute) and 24 hours of WD significantly increased plasma sodium concentrations, producing, respectively, either an increase or a decrease in extracellular volume. I-EVE (0.15M NaCl, 2mL/100g of body weight, in 1 minute) evoked a significant increase in the circulating volume accompanied by unaltered plasma concentrations of sodium. CART-expressing neurons of both magnocellular and parvocellular hypothalamic divisions were activated to produce Fos in response to H-EVE but not in response to I-EVE. Furthermore, increased expression of CART mRNA was found in the PVN of H-EVE but not I-EVE rats. These data show for the first time that EVE not only activates hypothalamic CRF neurons but also increases CRF mRNA expression in the PVN. In contrast, WD increases the number of CART-immunoreactive neurons activated to produce Fos in the PVN and SON but does not change the number of neurons double labeled for Fos and CRF or expression of CRF mRNA in the PVN. These findings provided new insights into the participation of CART in diverse processes within the PVN and SON, including its possible involvement in activation of the HPA axis and cardiovascular regulation in response to changes in extracellular volume and osmolality.


Hormones and Behavior | 2010

Corticotrophin-releasing factor mediates hypophagia after adrenalectomy, increasing meal-related satiety responses

Ernane Torres Uchoa; Lilian Eslaine Costa Mendes da Silva; Margaret de Castro; José Antunes-Rodrigues; Lucila Leico Kagohara Elias

Adrenalectomy-induced hypophagia is associated with increased satiety-related responses, which involve neuronal activation of the nucleus of the solitary tract (NTS). Besides its effects on the pituitary-adrenal axis, corticotrophin-releasing factor (CRF) has been shown to play an important role in feeding behaviour, as it possesses anorexigenic effects. We evaluated feeding-induced CRF mRNA expression in the paraventricular nucleus (PVN) and the effects of pretreatment with CRF(2) receptor antagonist (Antisauvagine-30, AS30) on food intake and activation of NTS neurons in response to feeding in adrenalectomised (ADX) rats. Compared to the sham group, ADX increased CRF mRNA levels in the PVN of fasted animals, which was further augmented by refeeding. AS30 treatment did not affect food intake in the sham and ADX+corticosterone (B) groups; however, it reversed hypophagia in the ADX group. In vehicle-pretreated animals, refeeding increased the number of Fos and Fos/TH-immunoreactive neurons in the NTS in the sham, ADX and ADX+B groups, with the highest number of neurons in the ADX animals. Similarly to its effect on food intake, pretreatment with AS30 in the ADX group also reversed the increased activation of NTS neurons induced by refeeding while having no effect in the sham and ADX+B animals. The present results show that adrenalectomy induces an increase in CRF mRNA expression in the PVN potentiated by feeding and that CRF(2) receptor antagonist abolishes the anorexigenic effect and the increased activation of NTS induced by feeding in the ADX animals. These data indicate that increased activity of PVN CRF neurons modulates brainstem satiety-related responses, contributing to hypophagia after adrenalectomy.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2014

High-fat diet induces site-specific unresponsiveness to LPS-stimulated STAT3 activation in the hypothalamus

Beatriz de Carvalho Borges; Rodrigo Rorato; Ernane Torres Uchoa; Paula Marangon; Glauber S.F. da Silva; Francisco José Albuquerque de Paula; Luiz G. S. Branco; José Antunes-Rodrigues; Lucila Leico Kagohara Elias

Hypophagia induced by inflammation is associated with Janus kinase (JAK)-2/signal transducer and activator of transcription (STAT) 3 signaling pathway, and leptin-mediated hypophagia is also mediated by JAK2-STAT3 pathway. We have previously reported that lipopolysaccharide (LPS) did not reduce food intake in leptin-resistant high-fat diet (HFD) rats but maintained body weight loss. We investigated whether changes in p-STAT3 expression in the hypothalamus and brain stem could account for the desensitization of hypophagia in HFD animals after a low LPS dose (100 μg/kg). Wistar rats fed standard diet (3.95 kcal/g) or HFD (6.3 kcal/g) for 8 wk were assigned into control diet-saline, control diet-LPS, HFD-saline, and HFD-LPS groups. LPS reduced feeding in the control diet but not HFD. This group showed no p-STAT3 expression in the paraventricular nucleus (PVN) and ventromedial hypothalamic nucleus (VMH), but sustained, though lower than control, p-STAT3 in the nucleus of the solitary tract (NTS) and raphe pallidus (RPa). LPS decreased body weight in HFD rats and increased Fos expression in the NTS. LPS increased body temperature, oxygen consumption, and energy expenditure in both control diet and HFD rats, and this response was more pronounced in HFD-LPS group. Brown adipose tissue (BAT) thermogenesis and increased energy expenditure seem to contribute to body weight loss in HFD-LPS. This response might be related with increased brain stem activation. In conclusion, LPS activates STAT3-mediated pathway in the hypothalamus and brain stem, leading to hypophagia, however, LPS effects on food intake, but not body weight loss, are abolished by leptin resistance induced by HFD. The preserved STAT3 phosphorylation in the brain stem suggests that unresponsiveness to LPS on STAT3 activation under HFD might be selective to the hypothalamus.


Experimental Physiology | 2013

Oxytocin projections to the nucleus of the solitary tract contribute to the increased meal‐related satiety responses in primary adrenal insufficiency

Ernane Torres Uchoa; Daniel S. Zahm; Beatriz de Carvalho Borges; Rodrigo Rorato; José Antunes-Rodrigues; Lucila Leico Kagohara Elias

•  What is the central question of this study? Adrenalectomy‐induced hypophagia is related to enhanced activation of satiety responses in the nucleus of the solitary tract (NTS) and is reversed by oxytocin receptor antagonist. The potential role of hypothalamic oxytocin projections to the NTS in the satiety‐related responses following adrenalectomy has not been reported. •  What is the main finding and its importance? Our study shows that adrenalectomy increases oxytocin projections to the NTS, and oxytocin receptor antagonist reverses the increased activation of NTS neurons induced by feeding after adrenalectomy. These data indicate that oxytocin pathways to the NTS contribute to higher satiety‐related responses, indicating that oxytocin is a mediator of hypophagia following adrenalectomy through its stimulatory effects on the NTS.

Collaboration


Dive into the Ernane Torres Uchoa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rodrigo Rorato

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L.L.K. Elias

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F.M.A. Corrêa

University of São Paulo

View shared research outputs
Researchain Logo
Decentralizing Knowledge