Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ernest J. Freeman is active.

Publication


Featured researches published by Ernest J. Freeman.


Neurochemical Research | 1990

Presynaptic facilitation of glutamate release from isolated hippocampal mossy fiber nerve endings by arachidonic acid

Ernest J. Freeman; David M. Terrian; Robert V. Dorman

Hippocampal mossy fiber synaptosomes were used to investigate the role of arachidonic acid in the release of endogenous glutamate and the long-lasting facilitation of glutamate release associated with long-term potentiation. Exogenous arachidonate induced a dose-dependent efflux of glutamate from the hippocampal mossy fiber synaptosomes and this effect was mimicked by melittin. Neither treatment induced the release of occluded lactate dehydrogenase at the concentrations used in these experiments. In each case, removal of the biochemical stimulus allowed for glutamate efflux to return to spontaneous levels. However, there was a persistent effect of exposure to either arachidonate or melittin, since these compounds facilitated the glutamate release induced by the subsequent addition of 35 mM KCl. This facilitation of glutamate release resulted from an enhancement of both the magnitude and duration of the response to depolarization. Although exogenous prostanoids were also able to stimulate the release of glutamate, they appeared to play no direct role in secretion processes, since inhibition of eicosanoid synthesis potentiated the glutamate efflux in response to membrane depolarization or exogenous arachidonic acid. We suggest that the calcium-dependent accumulation of arachidonic acid in presynaptic membranes plays a central role in the release of endogenous glutamate and that the persistent effects of arachidonic acid may be related to the maintenance of long-term potentiation in the hippocampal mossy fiber-CA3 synapse.


Biochimica et Biophysica Acta | 2011

Analysis of the mitochondrial proteome in multiple sclerosis cortex

Laurie Broadwater; Ashish Pandit; Robert J. Clements; Sausan Azzam; Jonathan Vadnal; Michael Sulak; V. Wee Yong; Ernest J. Freeman; Roger B. Gregory; Jennifer McDonough

Mitochondrial dysfunction has been proposed to play a role in the neuropathology of multiple sclerosis (MS). Previously, we reported significant alterations in the transcription of nuclear-encoded electron transport chain genes in MS and confirmed translational alterations for components of Complexes I and III that resulted in reductions in their activity. To more thoroughly and efficiently elucidate potential alterations in the expression of mitochondrial and related proteins, we have characterized the mitochondrial proteome in postmortem MS and control cortex using Surface-Enhanced Laser Desorption Ionization Time of Flight Mass Spectrometry (SELDI-TOF-MS). Using principal component analysis (PCA) and hierarchical clustering techniques we were able to analyze the differential patterns of SELDI-TOF spectra to reveal clusters of peaks which distinguished MS from control samples. Four proteins in particular were responsible for distinguishing disease from control. Peptide fingerprint mapping unambiguously identified these differentially expressed proteins. Three proteins identified are involved in respiration including cytochrome c oxidase subunit 5b (COX5b), the brain specific isozyme of creatine kinase, and hemoglobin β-chain. The fourth protein identified was myelin basic protein (MBP). We then investigated whether these alterations were consistent in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS. We found that MBP was similarly altered in EAE but the respiratory proteins were not. These data indicate that while the EAE mouse model may mimic aspects of MS neuropathology which result from inflammatory demyelinating events, there is another distinct mechanism involved in mitochondrial dysfunction in gray matter in MS which is not modeled in EAE.


Experimental Brain Research | 2008

Distribution of parvalbumin and calretinin immunoreactive interneurons in motor cortex from multiple sclerosis post-mortem tissue

Robert J. Clements; Jennifer McDonough; Ernest J. Freeman

Parvalbumin (PV) and calretinin (CR) are calcium binding proteins (CBP’s) expressed in discrete GABAergic interneuron populations in the human cortex. CBP’s are known to buffer calcium concentrations and protect neurons from increases in intracellular calcium. Perturbations in intracellular calcium can activate proteolytic enzymes including calpain, leading to deleterious effects to axons. Ca++-mediated mechanisms have been found to be associated with axonal pathology in MS and the restructuring of calcium channels has been shown to occur in experimental autoimmune encephalomyelitis (EAE) as well as multiple sclerosis tissue. Previous data indicates a reduction in the expression of the parvalbumin gene as well as reduced extension of neurites on parvalbumin expressing interneurons within multiple sclerosis normal appearing grey matter (NAGM). Modifications in interneuron parvalbumin or calretinin levels could change calcium buffering capacity, as well as the way these cells respond to neuronal insults. The present study was designed to compare CBP immunoreactive neurons in normal and multiple sclerosis post-mortem NAGM. To this end, we utilized immunofluorescent staining and high resolution confocal microscopy to map regions of the human motor cortex, and characterize layer specific CBP distribution in the normal and multiple sclerosis motor cortex. Our results indicate a significant reduction in the number of PV interneurons within layer 2 of the multiple sclerosis primary motor cortex with no concurrent change in number of calretinin positive neurons.


American Journal of Physiology-cell Physiology | 1998

ANG II-induced translocation of cytosolic PLA2 to the nucleus in vascular smooth muscle cells.

Ernest J. Freeman; Mary Louise Ruehr; Robert V. Dorman

The accumulation of radiolabeled arachidonic acid (AA), immunoblot analysis of subcellular fractions, and immunofluorescence tagging of proteins in intact cells were used to examine the coupling of ANG II receptors with the activity and location of a cytosolic phospholipase A2(cPLA2) in vascular smooth muscle cells (VSMC). ANG II induced the accumulation of AA, which peaked by 10 min and was downregulated by 20 min. A large proportion of the AA released in response to ANG II was due to the activation of a Ca2+-dependent lipase coupled to an AT1 receptor. However, regulation of Ca2+ availability failed to completely block AA release, and a small but significant reduction in ANG II-mediated AA release was observed in the presence of an AT2 antagonist. These findings, coupled with a 25% reduction in the ANG II-induced AA release by an inhibitor specific for a Ca2+-independent PLA2, are consistent with the presence and activation of a Ca2+-independent PLA2. In contrast, immunoblot analysis and immunofluorescence detection showed that the ANG II-mediated translocation of cPLA2to a membrane fraction was exclusively AT1 dependent and regulated by Ca2+ availability. Furthermore, the nucleus was the membrane target. We conclude that ANG II regulates the Ca2+-dependent activation and translocation of cPLA2 through an AT1 receptor and that this event is targeted at the nucleus in VSMC.


Journal of Neurochemistry | 1991

12‐Lipoxygenase Products Attenuate the Glutamate Release and Ca2+ Accumulation Evoked by Depolarization of Hippocampal Mossy Fiber Nerve Endings

Ernest J. Freeman; Derek S. Damron; David M. Terrian; Robert V. Dorman

Abstract: Presynaptic correlates of evoked neurotransmitter release include a rise in cytosolic free calcium level and the calcium‐dependent liberation of unesterified arachidonic acid. It has been proposed that lipoxygenase metabolites produced from arachidonic acid may constitute an endogenous feedback system for the modulation of neurotransmitter release. The results of the present study are in agreement with this hypothesis. It was demonstrated that membrane depolarization evoked the release of endogenous glutamate from hippocampal mossy fiber synaptosomes, as well as the accumulation of intraterminal free calcium. The presence of 12‐lipoxygenase products attenuated both the induced release of glutamate and the increase in calcium content, whereas 5‐ or 15‐lipoxygenase metabolites were ineffective. A role for lipoxygenase products in the negative modulation of mossy fiber secretion processes was further indicated by the observations that low concentrations of the lipoxygenase inhibitor nordihydroguaiaretic acid (0.1–10 μM) potentiated the glutamate release and calcium accumulation induced by membrane depolarization. Therefore, we suggest that 12‐lipoxygenase metabolites provide a presynaptic inhibitory signal that limits neurotransmitter release from hippocampal mossy fiber terminals.


Journal of the Neurological Sciences | 2009

Impaired regulation of electron transport chain subunit genes by nuclear respiratory factor 2 in multiple sclerosis

Ashish Pandit; Jonathan Vadnal; Sara Houston; Ernest J. Freeman; Jennifer McDonough

Multiple sclerosis (MS) is an inflammatory neurodegenerative disease. Recently, decreased expression of nuclear encoded electron transport chain genes was found in neurons in MS cortex. To understand the transcriptional mechanisms responsible for the coordinate down regulation of these genes, we performed electrophoretic mobility shifts with nuclear extracts isolated from gray matter from nonlesion areas of postmortem MS and control cortex. Nine tissue blocks from eight different MS brains and six matched control blocks from five control brains were analyzed. We identified a decrease in a transcription factor complex containing nuclear respiratory factor 2 (NRF-2) in nuclear extracts isolated from MS cortex. This decrease is correlated with decreased expression of electron transport chain subunit genes and increased oxidative damage measured by increased anti-nitrotyrosine immunoreactivity. We conclude that in MS cortex a chronic increase in oxidative stress leads to aberrant regulation of transcription of genes involved in energy metabolism.


The Journal of Neuroscience | 2015

Changes in Methionine Metabolism and Histone H3 Trimethylation Are Linked to Mitochondrial Defects in Multiple Sclerosis

Naveen K. Singhal; Shuo Li; Erland Arning; Kholoud Alkhayer; Robert J. Clements; Zachary Sarcyk; Rohan S. Dassanayake; Nicola E. Brasch; Ernest J. Freeman; Teodoro Bottiglieri; Jennifer McDonough

Mitochondrial changes, including decreased expression of electron transport chain subunit genes and impaired energetic, have been reported in multiple sclerosis (MS), but the mechanisms involved in these changes are not clear. To determine whether epigenetic mechanisms are involved, we measured the concentrations of methionine metabolites by liquid chromatography tandem mass spectrometry, histone H3 methylation patterns, and markers of mitochondrial respiration in gray matter from postmortem MS and control cortical samples. We found decreases in respiratory markers as well as decreased concentrations of the methionine metabolites S-adenosylmethionine, betaine, and cystathionine in MS gray matter. We also found expression of the enzyme betaine homocysteine methyltransferase in cortical neurons. This enzyme catalyzes the remethylation of homocysteine to methionine, with betaine as the methyl donor, and has previously been thought to be restricted to liver and kidney in the adult human. Decreases in the concentration of the methyl donor betaine were correlated with decreases in histone H3 trimethylation (H3K4me3) in NeuN+ neuronal nuclei in MS cortex compared with controls. Mechanistic studies demonstrated that H3K4me3 levels and mitochondrial respiration were reduced in SH-SY5Y cells after exposure to the nitric oxide donor sodium nitroprusside, and betaine was able to rescue H3K4me3 levels and respiratory capacity in these cells. Chromatin immunoprecipitation experiments showed that betaine regulates metabolic genes in human SH-SY5Y neuroblastoma cells. These data suggest that changes to methionine metabolism may be mechanistically linked to changes in neuronal energetics in MS cortex. SIGNIFICANCE STATEMENT For decades, it has been observed that vitamin B12 deficiency and multiple sclerosis (MS) share certain pathological changes, including conduction disturbances. In the present study, we have found that vitamin B12-dependent methionine metabolism is dysregulated in the MS brain. We found that concentrations of the methyl donor betaine are decreased in MS cortex and are correlated with reduced levels of the histone H3 methyl mark H3K4me3 in neurons. Cell culture and chromatin immunoprecipitation-seq data suggest that these changes may lead to defects in mitochondria and impact neuronal energetics. These data have uncovered a novel pathway linking methionine metabolism with mitochondrial respiration and have important implications for understanding mechanisms involved in neurodegeneration in MS.


Advances in Experimental Medicine and Biology | 1992

Modulation of Glutamate Release From Hippocampal Mossy Fiber Nerve Endings By Arachidonic Acid And Eicosanoids

Robert V. Dorman; T. F. R. Hamm; Derek S. Damron; Ernest J. Freeman

Arachidonic acid has been implicated in normal synaptic transmission processes, including those related to the development of hippocampal long-term synaptic potentiation. Hippocampal mossy fiber (MF) synaptosomes were used to investigate the role of arachidonate in the evoked accumulation of presynaptic Ca2+ and the release of endogenous glutamate, since these nerve terminals express long-term potentiation and selectively release glutamate as the excitatory transmitter. It was demonstrated that membrane depolarization evoked the accumulation of Ca2+, the release of glutamate, and the production of unesterified arachidonic acid. These events may be functionally related, since exogenous arachidonate and phospholipase A2 activation mimicked the effects of depolarization on Ca2+ availability and glutamate release, while secretion processes were attenuated in the presence of phospholipase A2 inhibitors. In addition, pretreatment of the nerve terminals with arachidonate or melittin allowed for the facilitated release of glutamate in response to a subsequent depolarizing stimulus. Inhibition of cyclooxygenase or lipoxygenase activities also potentiated presynaptic responses to membrane depolarization. In contrast, 12-lipoxygenase products attenuated the depolarization-evoked accumulation of intraterminal free Ca2+ and glutamate release. It is suggested that arachidonic acid acts as a positive modulator of mossy fiber secretion processes, including those involved in the increased glutamate release required for the induction of long-term potentiation, while 12-lipoxygenase metabolites provide negative feedback signals designed to limit neurotransmitter secretion.


ACS Applied Materials & Interfaces | 2015

Liquid Crystal Elastomer Microspheres as Three-Dimensional Cell Scaffolds Supporting the Attachment and Proliferation of Myoblasts

Tanmay Bera; Ernest J. Freeman; Jennifer McDonough; Robert J. Clements; Asaad Aladlaan; Donald W. Miller; Christopher Malcuit; Torsten Hegmann; Elda Hegmann

We report that liquid crystal elastomers (LCEs), often portrayed as artificial muscles, serve as scaffolds for skeletal muscle cell. A simultaneous microemulsion photopolymerization and cross-linking results in nematic LCE microspheres 10-30 μm in diameter that when conjoined form a LCE construct that serves as the first proof-of-concept for responsive LCE muscle cell scaffolds. Confocal microscopy experiments clearly established that LCEs with a globular, porous morphology permit both attachment and proliferation of C2C12 myoblasts, while the nonporous elastomer morphology, prepared in the absence of a microemulsion, does not. In addition, cytotoxicity and proliferation assays confirm that the liquid crystal elastomer materials are biocompatible promoting cellular proliferation without any inherent cytotoxicity.


Annals of Neurology | 2015

Ablating N-Acetylaspartate Prevents Leukodystrophy in a Canavan Disease Model

Fuzheng Guo; Peter Bannerman; Emily Mills Ko; Laird Miers; Jie Xu; Travis Burns; Shuo Li; Ernest J. Freeman; Jennifer McDonough; David Pleasure

Canavan disease is caused by inactivating ASPA (aspartoacylase) mutations that prevent cleavage of N‐acetyl‐L‐aspartate (NAA), resulting in marked elevations in central nervous system (CNS) NAA and progressively worsening leukodystrophy. We now report that ablating NAA synthesis by constitutive genetic disruption of Nat8l (N‐acetyltransferase‐8 like) permits normal CNS myelination and prevents leukodystrophy in a murine Canavan disease model. Ann Neurol 2015;77:884–888

Collaboration


Dive into the Ernest J. Freeman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shuo Li

Kent State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

LaShanda T. J. Korley

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge