Ernest Mui
University of Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ernest Mui.
PLOS ONE | 2008
Sarra E. Jamieson; Lee-Anne de Roubaix; Mario Cortina-Borja; Hooi Kuan Tan; Ernest Mui; Heather J. Cordell; Michael J. Kirisits; E. Nancy Miller; Christopher S. Peacock; Aubrey C. Hargrave; Jessica J. Coyne; Kenneth M. Boyer; Marie-Hélène Bessières; Wilma Buffolano; Nicole Ferret; Jacqueline Franck; François Kieffer; Paul Meier; Dorota Nowakowska; Małgorzata Paul; François Peyron; Babill Stray-Pedersen; Andrea-Romana Prusa; Philippe Thulliez; Martine Wallon; Eskild Petersen; Rima McLeod; Ruth Gilbert; Jenefer M. Blackwell
Background Primary Toxoplasma gondii infection during pregnancy can be transmitted to the fetus. At birth, infected infants may have intracranial calcification, hydrocephalus, and retinochoroiditis, and new ocular lesions can occur at any age after birth. Not all children who acquire infection in utero develop these clinical signs of disease. Whilst severity of disease is influenced by trimester in which infection is acquired by the mother, other factors including genetic predisposition may contribute. Methods and Findings In 457 mother-child pairs from Europe, and 149 child/parent trios from North America, we show that ocular and brain disease in congenital toxoplasmosis associate with polymorphisms in ABCA4 encoding ATP-binding cassette transporter, subfamily A, member 4. Polymorphisms at COL2A1 encoding type II collagen associate only with ocular disease. Both loci showed unusual inheritance patterns for the disease allele when comparing outcomes in heterozygous affected children with outcomes in affected children of heterozygous mothers. Modeling suggested either an effect of mothers genotype, or parent-of-origin effects. Experimental studies showed that both ABCA4 and COL2A1 show isoform-specific epigenetic modifications consistent with imprinting. Conclusions These associations between clinical outcomes of congenital toxoplasmosis and polymorphisms at ABCA4 and COL2A1 provide novel insight into the molecular pathways that can be affected by congenital infection with this parasite.
International Journal for Parasitology | 2001
Rima McLeod; Stephen P. Muench; John B. Rafferty; Dennis E. Kyle; Ernest Mui; Michael J. Kirisits; Douglas G. Mack; Craig W. Roberts; Benjamin U. Samuel; Russell E. Lyons; Mark Dorris; Wilbur K. Milhous; David W. Rice
Fab I, enoyl acyl carrier protein reductase (ENR), is an enzyme used in fatty acid synthesis. It is a single chain polypeptide in plants, bacteria, and mycobacteria, but is part of a complex polypeptide in animals and fungi. Certain other enzymes in fatty acid synthesis in apicomplexan parasites appear to have multiple forms, homologous to either a plastid, plant-like single chain enzyme or more like the animal complex polypeptide chain. We identified a plant-like Fab I in Plasmodium falciparum and modelled the structure on the Brassica napus and Escherichia coli structures, alone and complexed to triclosan (5-chloro-2-[2,4 dichlorophenoxy] phenol]), which confirmed all the requisite features of an ENR and its interactions with triclosan. Like the remarkable effect of triclosan on a wide variety of bacteria, this compound markedly inhibits growth and survival of the apicomplexan parasites P. falciparum and Toxoplasma gondii at low (i.e. IC50 congruent with150-2000 and 62 ng/ml, respectively) concentrations. Discovery and characterisation of an apicomplexan Fab I and discovery of triclosan as lead compound provide means to rationally design novel inhibitory compounds.
Journal of Neuroinflammation | 2008
Gretchen Hermes; James W. Ajioka; Krystyna A. Kelly; Ernest Mui; Fiona Roberts; Kristen Kasza; Thomas Mayr; Michael J. Kirisits; Robert L. Wollmann; David J. P. Ferguson; Craig W. Roberts; Jong Hee Hwang; Toria Trendler; Richard P. Kennan; Yasuhiro Suzuki; Catherine Reardon; William F. Hickey; Lieping Chen; Rima McLeod
BackgroundWorldwide, approximately two billion people are chronically infected with Toxoplasma gondii with largely unknown consequences.MethodsTo better understand long-term effects and pathogenesis of this common, persistent brain infection, mice were infected at a time in human years equivalent to early to mid adulthood and studied 5–12 months later. Appearance, behavior, neurologic function and brain MRIs were studied. Additional analyses of pathogenesis included: correlation of brain weight and neurologic findings; histopathology focusing on brain regions; full genome microarrays; immunohistochemistry characterizing inflammatory cells; determination of presence of tachyzoites and bradyzoites; electron microscopy; and study of markers of inflammation in serum. Histopathology in genetically resistant mice and cytokine and NRAMP knockout mice, effects of inoculation of isolated parasites, and treatment with sulfadiazine or αPD1 ligand were studied.ResultsTwelve months after infection, a time equivalent to middle to early elderly ages, mice had behavioral and neurological deficits, and brain MRIs showed mild to moderate ventricular dilatation. Lower brain weight correlated with greater magnitude of neurologic abnormalities and inflammation. Full genome microarrays of brains reflected inflammation causing neuronal damage (Gfap), effects on host cell protein processing (ubiquitin ligase), synapse remodeling (Complement 1q), and also increased expression of PD-1L (a ligand that allows persistent LCMV brain infection) and CD 36 (a fatty acid translocase and oxidized LDL receptor that mediates innate immune response to beta amyloid which is associated with pro-inflammation in Alzheimers disease). Immunostaining detected no inflammation around intra-neuronal cysts, practically no free tachyzoites, and only rare bradyzoites. Nonetheless, there were perivascular, leptomeningeal inflammatory cells, particularly contiguous to the aqueduct of Sylvius and hippocampus, CD4+ and CD8+ T cells, and activated microglia in perivascular areas and brain parenchyma. Genetically resistant, chronically infected mice had substantially less inflammation.ConclusionIn outbred mice, chronic, adult acquired T. gondii infection causes neurologic and behavioral abnormalities secondary to inflammation and loss of brain parenchyma. Perivascular inflammation is prominent particularly contiguous to the aqueduct of Sylvius and hippocampus. Even resistant mice have perivascular inflammation. This mouse model of chronic T. gondii infection raises questions of whether persistence of this parasite in brain can cause inflammation or neurodegeneration in genetically susceptible hosts.
Infection and Immunity | 2011
William H. Witola; Ernest Mui; Aubrey C. Hargrave; Susan Liu; Magali Hypolite; Alexandre Montpetit; Pierre Cavailles; Cordelia Bisanz; Marie-France Cesbron-Delauw; Gilbert J. Fournié; Rima McLeod
ABSTRACT NALP1 is a member of the NOD-like receptor (NLR) family of proteins that form inflammasomes. Upon cellular infection or stress, inflammasomes are activated, triggering maturation of proinflammatory cytokines and downstream cellular signaling mediated through the MyD88 adaptor. Toxoplasma gondii is an obligate intracellular parasite that stimulates production of high levels of proinflammatory cytokines that are important in innate immunity. In this study, susceptibility alleles for human congenital toxoplasmosis were identified in the NALP1 gene. To investigate the role of the NALP1 inflammasome during infection with T. gondii, we genetically engineered a human monocytic cell line for NALP1 gene knockdown by RNA interference. NALP1 silencing attenuated progression of T. gondii infection, with accelerated host cell death and eventual cell disintegration. In line with this observation, upregulation of the proinflammatory cytokines interleukin-1β (IL-1β), IL-18, and IL-12 upon T. gondii infection was not observed in monocytic cells with NALP1 knockdown. These findings suggest that the NALP1 inflammasome is critical for mediating innate immune responses to T. gondii infection and pathogenesis. Although there have been recent advances in understanding the potent activity of inflammasomes in directing innate immune responses to disease, this is the first report, to our knowledge, on the crucial role of the NALP1 inflammasome in the pathogenesis of T. gondii infections in humans.
The Journal of Infectious Diseases | 2002
Craig W. Roberts; Fiona Roberts; Russell E. Lyons; Michael J. Kirisits; Ernest Mui; John R. Finnerty; Jennifer J. Johnson; David J. P. Ferguson; John R. Coggins; Tino Krell; Graham H. Coombs; Wilbur K. Milhous; Dennis Kyle; Saul Tzipori; John W. Barnwell; John B. Dame; Jane M. Carlton; Rima McLeod
The shikimate pathway is essential for production of a plethora of aromatic compounds in plants, bacteria, and fungi. Seven enzymes of the shikimate pathway catalyze sequential conversion of erythrose 4-phosphate and phosphoenol pyruvate to chorismate. Chorismate is then used as a substrate for other pathways that culminate in production of folates, ubiquinone, napthoquinones, and the aromatic amino acids tryptophan, phenylalanine, and tyrosine. The shikimate pathway is absent from animals and present in the apicomplexan parasites Toxoplasma gondii, Plasmodium falciparum, and Cryptosporidium parvum. Inhibition of the pathway by glyphosate is effective in controlling growth of these parasites. These findings emphasize the potential benefits of developing additional effective inhibitors of the shikimate pathway. Such inhibitors may function as broad-spectrum antimicrobial agents that are effective against bacterial and fungal pathogens and apicomplexan parasites.
Journal of Parasitology | 2011
Dolores E. Hill; Cathleen Coss; J. P. Dubey; Kristen Wroblewski; Mari Sautter; Tiffany Hosten; Claudia Muñoz-Zanzi; Ernest Mui; Shawn Withers; Kenneth M. Boyer; Gretchen Hermes; Jessica J. Coyne; Frank Jagdis; Andrew Burnett; Patrick McLeod; Holmes Morton; Donna L. Robinson; Rima McLeod
Abstract Reduction of risk for human and food animal infection with Toxoplasma gondii is hampered by the lack of epidemiological data documenting the predominant routes of infection (oocyst vs. tissue cyst consumption) in horizontally transmitted toxoplasmosis. Existing serological assays can determine previous exposure to the parasite, but not the route of infection. We have used difference gel electrophoresis, in combination with tandem mass spectroscopy and Western blot, to identify a sporozoite-specific protein (T. gondii embryogenesis-related protein [TgERP]), which elicited antibody and differentiated oocyst- versus tissue cyst–induced infection in pigs and mice. The recombinant protein was selected from a cDNA library constructed from T. gondii sporozoites; this protein was used in Western blots and probed with sera from T. gondii–infected humans. Serum antibody to TgERP was detected in humans within 6–8 mo of initial oocyst-acquired infection. Of 163 individuals in the acute stage of infection (anti–T. gondii IgM detected in sera, or <30 in the IgG avidity test), 103 (63.2%) had detectable antibodies that reacted with TgERP. Of 176 individuals with unknown infection route and in the chronic stage of infection (no anti–T. gondii IgM detected in sera, or >30 in the IgG avidity test), antibody to TgERP was detected in 31 (17.6%). None of the 132 uninfected individuals tested had detectable antibody to TgERP. These data suggest that TgERP may be useful in detecting exposure to sporozoites in early T. gondii infection and implicates oocysts as the agent of infection.
Clinical Infectious Diseases | 2012
Rima McLeod; Kenneth M. Boyer; Daniel Lee; Ernest Mui; Kristen Wroblewski; Theodore Karrison; A. Gwendolyn Noble; Shawn Withers; Charles N. Swisher; Peter T. Heydemann; Mari Sautter; Jane Babiarz; Peter Rabiah; Paul Meier; Michael E. Grigg
BACKGROUND Congenital toxoplasmosis is a severe, life-altering disease in the United States. A recently developed enzyme-linked immunosorbent assay (ELISA) distinguishes Toxoplasma gondii parasite types (II and not exclusively II [NE-II]) by detecting antibodies in human sera that recognize allelic peptide motifs of distinct parasite types. METHODS ELISA determined parasite serotype for 193 congenitally infected infants and their mothers in the National Collaborative Chicago-based Congenital Toxoplasmosis Study (NCCCTS), 1981-2009. Associations of parasite serotype with demographics, manifestations at birth, and effects of treatment were determined. RESULTS Serotypes II and NE-II occurred in the United States with similar proportions during 3 decades. For persons diagnosed before or at birth and treated in infancy, and persons diagnosed after 1 year of age who missed treatment in infancy, proportions were similar (P = .91). NE-II serotype was more common in hot, humid regions (P = .02) but was also present in other regions. NE-II serotype was associated with rural residence (P < .01), lower socioeconomic status (P < .001), and Hispanic ethnicity (P < .001). Prematurity (P = .03) and severe disease at birth (P < .01) were associated with NE-II serotype. Treatment with lower and higher doses of pyrimethamine with sulfadizine improved outcomes relative to those outcomes of persons in the literature who did not receive such treatment. CONCLUSIONS Type II and NE-II parasites cause congenital toxoplasmosis in North America. NE-II serotype was more prevalent in certain demographics and associated with prematurity and severe disease at birth. Both type II and NE-II infections improved with treatment. CLINICAL TRIALS REGISTRATION NCT00004317.
Clinical Infectious Diseases | 2011
Kenneth M. Boyer; Dolores E. Hill; Ernest Mui; Kristen Wroblewski; Theodore Karrison; J. P. Dubey; Mari Sautter; A. Gwendolyn Noble; Shawn Withers; Charles N. Swisher; Peter T. Heydemann; Tiffany Hosten; Jane Babiarz; Daniel Lee; Paul Meier; Rima McLeod
BACKGROUND Congenital toxoplasmosis presents as severe, life-altering disease in North America. If mothers of infants with congenital toxoplasmosis could be identified by risks, it would provide strong support for educating pregnant women about risks, to eliminate this disease. Conversely, if not all risks are identifiable, undetectable risks are suggested. A new test detecting antibodies to sporozoites demonstrated that oocysts were the predominant source of Toxoplasma gondii infection in 4 North American epidemics and in mothers of children in the National Collaborative Chicago-based Congenital Toxoplasmosis Study (NCCCTS). This novel test offered the opportunity to determine whether risk factors or demographic characteristics could identify mothers infected with oocysts. METHODS Acutely infected mothers and their congenitally infected infants were evaluated, including in-person interviews concerning risks and evaluation of perinatal maternal serum samples. RESULTS Fifty-nine (78%) of 76 mothers of congenitally infected infants in NCCCTS had primary infection with oocysts. Only 49% of these mothers identified significant risk factors for sporozoite acquisition. Socioeconomic status, hometown size, maternal clinical presentations, and ethnicity were not reliable predictors. CONCLUSIONS Undetected contamination of food and water by oocysts frequently causes human infections in North America. Risks are often unrecognized by those infected. Demographic characteristics did not identify oocyst infections. Thus, although education programs describing hygienic measures may be beneficial, they will not suffice to prevent the suffering and economic consequences associated with congenital toxoplasmosis. Only a vaccine or implementation of systematic serologic testing of pregnant women and newborns, followed by treatment, will prevent most congenital toxoplasmosis in North America.
Journal of Immunology | 2010
Michael P. Lees; Stephen J. Fuller; Rima McLeod; Nicola R. Boulter; Catherine M. Miller; Alana M. Zakrzewski; Ernest Mui; William H. Witola; Jessica J. Coyne; Aubrey C. Hargrave; Sarra E. Jamieson; Jenefer M. Blackwell; James S. Wiley; Nicholas C. Smith
The P2X7R is highly expressed on the macrophage cell surface, and activation of infected cells by extracellular ATP has been shown to kill intracellular bacteria and parasites. Furthermore, single nucleotide polymorphisms that decrease receptor function reduce the ability of human macrophages to kill Mycobacterium tuberculosis and are associated with extrapulmonary tuberculosis. In this study, we show that macrophages from people with the 1513C (rs3751143, NM_002562.4:c.1487A>C) loss-of-function P2X7R single nucleotide polymorphism are less effective in killing intracellular Toxoplasma gondii after exposure to ATP compared with macrophages from people with the 1513A wild-type allele. Supporting a P2X7R-specific effect on T. gondii, macrophages from P2X7R knockout mice (P2X7R−/−) are unable to kill T. gondii as effectively as macrophages from wild-type mice. We show that P2X7R-mediated T. gondii killing occurs in parallel with host cell apoptosis and is independent of NO production.
Genes and Immunity | 2010
Sarra E. Jamieson; Alba Lucinia Peixoto-Rangel; Aubrey C. Hargrave; Lee-Anne de Roubaix; Ernest Mui; Nicola R. Boulter; E. Nancy Miller; Stephen J. Fuller; James S. Wiley; Léa Castellucci; Kenneth M. Boyer; Ricardo Guerra Peixe; Michael J. Kirisits; Liliani de Souza Elias; Jessica J. Coyne; Rodrigo Correa-Oliveira; Mari Sautter; Nicholas Jc Smith; Michael P. Lees; Charles N. Swisher; Peter T. Heydemann; A. Gwendolyn Noble; Dushyant Kumar G. Patel; Dianna M. E. Bardo; Delilah Burrowes; David G. McLone; Nancy Roizen; Shawn Withers; Lilian M. G. Bahia-Oliveira; Rima McLeod
Congenital Toxoplasma gondii infection can result in intracranial calcification, hydrocephalus and retinochoroiditis. Acquired infection is commonly associated with ocular disease. Pathology is characterized by strong proinflammatory responses. Ligation of ATP by purinergic receptor P2X7, encoded by P2RX7, stimulates proinflammatory cytokines and can lead directly to killing of intracellular pathogens. To determine whether P2X7 has a role in susceptibility to congenital toxoplasmosis, we examined polymorphisms at P2RX7 in 149 child/parent trios from North America. We found association (FBAT Z-scores ±2.429; P=0.015) between the derived C(+)G(−) allele (f=0.68; OR=2.06; 95% CI: 1.14–3.75) at single-nucleotide polymorphism (SNP) rs1718119 (1068T>C; Thr-348-Ala), and a second synonymous variant rs1621388 in linkage disequilibrium with it, and clinical signs of disease per se. Analysis of clinical subgroups showed no association with hydrocephalus, with effect sizes for associations with retinal disease and brain calcifications enhanced (OR=3.0–4.25; 0.004<P<0.009) when hydrocephalus was removed from the analysis. Association with toxoplasmic retinochoroiditis was replicated (FBAT Z-scores ±3.089; P=0.002) in a small family-based study (60 families; 68 affected offspring) of acquired infection in Brazil, where the ancestral T(+) allele (f=0.296) at SNP rs1718119 was strongly protective (OR=0.27; 95% CI: 0.09–0.80).