Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ernest Szeto is active.

Publication


Featured researches published by Ernest Szeto.


Nature | 2007

Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite

Falk Warnecke; Peter Luginbühl; Natalia Ivanova; Majid Ghassemian; Toby Richardson; Justin T. Stege; Michelle Cayouette; Alice C. McHardy; Gordana Djordjevic; Nahla Aboushadi; Rotem Sorek; Susannah G. Tringe; Mircea Podar; Hector Garcia Martin; Victor Kunin; Daniel Dalevi; Julita Madejska; Edward Kirton; Darren Platt; Ernest Szeto; Asaf Salamov; Kerrie Barry; Natalia Mikhailova; Nikos C. Kyrpides; Eric G. Matson; Elizabeth A. Ottesen; Xinning Zhang; Myriam Hernández; Catalina Murillo; Luis G. Acosta

From the standpoints of both basic research and biotechnology, there is considerable interest in reaching a clearer understanding of the diversity of biological mechanisms employed during lignocellulose degradation. Globally, termites are an extremely successful group of wood-degrading organisms and are therefore important both for their roles in carbon turnover in the environment and as potential sources of biochemical catalysts for efforts aimed at converting wood into biofuels. Only recently have data supported any direct role for the symbiotic bacteria in the gut of the termite in cellulose and xylan hydrolysis. Here we use a metagenomic analysis of the bacterial community resident in the hindgut paunch of a wood-feeding ‘higher’ Nasutitermes species (which do not contain cellulose-fermenting protozoa) to show the presence of a large, diverse set of bacterial genes for cellulose and xylan hydrolysis. Many of these genes were expressed in vivo or had cellulase activity in vitro, and further analyses implicate spirochete and fibrobacter species in gut lignocellulose degradation. New insights into other important symbiotic functions including H2 metabolism, CO2-reductive acetogenesis and N2 fixation are also provided by this first system-wide gene analysis of a microbial community specialized towards plant lignocellulose degradation. Our results underscore how complex even a 1-μl environment can be.


Nucleic Acids Research | 2012

IMG: the integrated microbial genomes database and comparative analysis system

Victor Markowitz; I-Min A. Chen; Krishna Palaniappan; Ken Chu; Ernest Szeto; Yuri Grechkin; Anna Ratner; Biju Jacob; Jinghua Huang; Peter Williams; Marcel Huntemann; Iain Anderson; Konstantinos Mavromatis; Natalia Ivanova; Nikos C. Kyrpides

The Integrated Microbial Genomes (IMG) system serves as a community resource for comparative analysis of publicly available genomes in a comprehensive integrated context. IMG integrates publicly available draft and complete genomes from all three domains of life with a large number of plasmids and viruses. IMG provides tools and viewers for analyzing and reviewing the annotations of genes and genomes in a comparative context. IMGs data content and analytical capabilities have been continuously extended through regular updates since its first release in March 2005. IMG is available at http://img.jgi.doe.gov. Companion IMG systems provide support for expert review of genome annotations (IMG/ER: http://img.jgi.doe.gov/er), teaching courses and training in microbial genome analysis (IMG/EDU: http://img.jgi.doe.gov/edu) and analysis of genomes related to the Human Microbiome Project (IMG/HMP: http://www.hmpdacc-resources.org/img_hmp).


Nature Biotechnology | 2006

Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities

Hector Garcia Martin; Natalia Ivanova; Victor Kunin; Falk Warnecke; Kerrie Barry; Alice C. McHardy; Christine Yeates; Shaomei He; Asaf Salamov; Ernest Szeto; Eileen Dalin; Nik Putnam; Harris Shapiro; Jasmyn Pangilinan; Isidore Rigoutsos; Nikos C. Kyrpides; Linda L. Blackall; Katherine D. McMahon; Philip Hugenholtz

Enhanced biological phosphorus removal (EBPR) is one of the best-studied microbially mediated industrial processes because of its ecological and economic relevance. Despite this, it is not well understood at the metabolic level. Here we present a metagenomic analysis of two lab-scale EBPR sludges dominated by the uncultured bacterium, “Candidatus Accumulibacter phosphatis.” The analysis sheds light on several controversies in EBPR metabolic models and provides hypotheses explaining the dominance of A. phosphatis in this habitat, its lifestyle outside EBPR and probable cultivation requirements. Comparison of the same species from different EBPR sludges highlights recent evolutionary dynamics in the A. phosphatis genome that could be linked to mechanisms for environmental adaptation. In spite of an apparent lack of phylogenetic overlap in the flanking communities of the two sludges studied, common functional themes were found, at least one of them complementary to the inferred metabolism of the dominant organism. The present study provides a much needed blueprint for a systems-level understanding of EBPR and illustrates that metagenomics enables detailed, often novel, insights into even well-studied biological systems.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Dissecting biological "dark matter" with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth.

Yann Marcy; Cleber C. Ouverney; Elisabeth Bik; Tina Lösekann; Natalia Ivanova; Hector Garcia Martin; Ernest Szeto; Darren Platt; Philip Hugenholtz; David A. Relman; Stephen R. Quake

We have developed a microfluidic device that allows the isolation and genome amplification of individual microbial cells, thereby enabling organism-level genomic analysis of complex microbial ecosystems without the need for culture. This device was used to perform a directed survey of the human subgingival crevice and to isolate bacteria having rod-like morphology. Several isolated microbes had a 16S rRNA sequence that placed them in candidate phylum TM7, which has no cultivated or sequenced members. Genome amplification from individual TM7 cells allowed us to sequence and assemble >1,000 genes, providing insight into the physiology of members of this phylum. This approach enables single-cell genetic analysis of any uncultivated minority member of a microbial community.


Nucleic Acids Research | 2014

IMG 4 version of the integrated microbial genomes comparative analysis system

Victor Markowitz; I-Min A. Chen; Krishna Palaniappan; Ken Chu; Ernest Szeto; Manoj Pillay; Anna Ratner; Jinghua Huang; Tanja Woyke; Marcel Huntemann; Iain Anderson; Konstantinos Billis; Neha Varghese; Konstantinos Mavromatis; Amrita Pati; Natalia Ivanova; Nikos C. Kyrpides

The Integrated Microbial Genomes (IMG) data warehouse integrates genomes from all three domains of life, as well as plasmids, viruses and genome fragments. IMG provides tools for analyzing and reviewing the structural and functional annotations of genomes in a comparative context. IMG’s data content and analytical capabilities have increased continuously since its first version released in 2005. Since the last report published in the 2012 NAR Database Issue, IMG’s annotation and data integration pipelines have evolved while new tools have been added for recording and analyzing single cell genomes, RNA Seq and biosynthetic cluster data. Different IMG datamarts provide support for the analysis of publicly available genomes (IMG/W: http://img.jgi.doe.gov/w), expert review of genome annotations (IMG/ER: http://img.jgi.doe.gov/er) and teaching and training in the area of microbial genome analysis (IMG/EDU: http://img.jgi.doe.gov/edu).


Nucleic Acids Research | 2006

The integrated microbial genomes (IMG) system

Victor Markowitz; Frank Korzeniewski; Krishna Palaniappan; Ernest Szeto; Greg Werner; Anu Padki; Xueling Zhao; Inna Dubchak; Philip Hugenholtz; Iain Anderson; Athanasios Lykidis; Konstantinos Mavromatis; Natalia Ivanova; Nikos C. Kyrpides

The integrated microbial genomes (IMG) system is a new data management and analysis platform for microbial genomes provided by the Joint Genome Institute (JGI). IMG contains both draft and complete JGI genomes integrated with other publicly available microbial genomes of all three domains of life. IMG provides tools and viewers for analyzing genomes, genes and functions, individually or in a comparative context. IMG allows users to focus their analysis on subsets of genes and genomes of interest and to save the results of their analysis. IMG is available at .


Nucleic Acids Research | 2007

IMG/M: a data management and analysis system for metagenomes

Victor Markowitz; Natalia Ivanova; Ernest Szeto; Krishna Palaniappan; Ken Chu; Daniel Dalevi; I-Min A. Chen; Yuri Grechkin; Inna Dubchak; Iain Anderson; Athanasios Lykidis; Konstantinos Mavromatis; Philip Hugenholtz; Nikos C. Kyrpides

IMG/M is a data management and analysis system for microbial community genomes (metagenomes) hosted at the Department of Energys (DOE) Joint Genome Institute (JGI). IMG/M consists of metagenome data integrated with isolate microbial genomes from the Integrated Microbial Genomes (IMG) system. IMG/M provides IMGs comparative data analysis tools extended to handle metagenome data, together with metagenome-specific analysis tools. IMG/M is available at http://img.jgi.doe.gov/m


Nucleic Acids Research | 2010

The integrated microbial genomes system: an expanding comparative analysis resource

Victor Markowitz; I-Min A. Chen; Krishna Palaniappan; Ken Chu; Ernest Szeto; Yuri Grechkin; Anna Ratner; Iain Anderson; Athanasios Lykidis; Konstantinos Mavromatis; Natalia Ivanova; Nikos C. Kyrpides

The integrated microbial genomes (IMG) system serves as a community resource for comparative analysis of publicly available genomes in a comprehensive integrated context. IMG contains both draft and complete microbial genomes integrated with other publicly available genomes from all three domains of life, together with a large number of plasmids and viruses. IMG provides tools and viewers for analyzing and reviewing the annotations of genes and genomes in a comparative context. Since its first release in 2005, IMG’s data content and analytical capabilities have been constantly expanded through regular releases. Several companion IMG systems have been set up in order to serve domain specific needs, such as expert review of genome annotations. IMG is available at http://img.jgi.doe.gov.


Nature Biotechnology | 2008

High-resolution metagenomics targets specific functional types in complex microbial communities.

Marina G. Kalyuzhnaya; Alla Lapidus; Natalia Ivanova; Alex Copeland; Alice C. McHardy; Ernest Szeto; Asaf Salamov; Igor V. Grigoriev; Dominic Suciu; Samuel R Levine; Victor Markowitz; Isidore Rigoutsos; Susannah G. Tringe; David Bruce; Paul M. Richardson; Mary E. Lidstrom; Ludmila Chistoserdova

Most microbes in the biosphere remain unculturable. Whole genome shotgun (WGS) sequencing of environmental DNA (metagenomics) can be used to study the genetic and metabolic properties of natural microbial communities. However, in communities of high complexity, metagenomics fails to link specific microbes to specific ecological functions. To overcome this limitation, we developed a method to target microbial subpopulations by labeling DNA through stable isotope probing (SIP), followed by WGS sequencing. Metagenome analysis of microbes from Lake Washington in Seattle that oxidize single-carbon (C1) compounds shows specific sequence enrichments in response to different C1 substrates, revealing the ecological roles of individual phylotypes. We also demonstrate the utility of our approach by extracting a nearly complete genome of a novel methylotroph, Methylotenera mobilis, reconstructing its metabolism and conducting genome-wide analyses. This high-resolution, targeted metagenomics approach may be applicable to a wide variety of ecosystems.


Nucleic Acids Research | 2007

The integrated microbial genomes (IMG) system in 2007: data content and analysis tool extensions

Victor Markowitz; Ernest Szeto; Krishna Palaniappan; Yuri Grechkin; Ken Chu; I-Min A. Chen; Inna Dubchak; Iain Anderson; Athanasios Lykidis; Konstantinos Mavromatis; Natalia Ivanova; Nikos C. Kyrpides

The integrated microbial genomes (IMG) system is a data management, analysis and annotation platform for all publicly available genomes. IMG contains both draft and complete JGI microbial genomes integrated with all other publicly available genomes from all three domains of life, together with a large number of plasmids and viruses. IMG provides tools and viewers for analyzing and annotating genomes, genes and functions, individually or in a comparative context. Since its first release in 2005, IMGs data content and analytical capabilities have been constantly expanded through quarterly releases. IMG is provided by the DOE-Joint Genome Institute (JGI) and is available from http://img.jgi.doe.gov.

Collaboration


Dive into the Ernest Szeto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natalia Ivanova

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Nikos C. Kyrpides

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

I-Min A. Chen

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Amrita Pati

Joint Genome Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Krishna Palaniappan

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James Han

Joint Genome Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge